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General Introduction

• Starting from Lecture 2, we use lower case y and x to denote the economic

variables in the regression models (different from Lecture 1), and {yi}ni=1

and {xi}ni=1 are realized/sample values of those economic variables;

• The economic variable y that we want to explain (e.g. expenditure) is called

“dependent variable” and the economic variable x that we want to use

(e.g. income) to explain the “dependent variable” is called “independent”

or “explanatory” variable;

• In Econometrics, we want to use the data {yi}ni=1 and {xi}ni=1 to learn

about the relationship between y and x.
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General Introduction

General Question to Answer: conditional on x (e.g. income), what is your

expectation on y (e.g. expenditure)?

⇐⇒
E[y|x] =?

• Firstly, you should have an assumption on the form of E[y|x] (based on

data pattern/model selection techniques/just try different forms and etc).

The “hypothesized” form is also called the “theoretical regression model”;

• Secondly, you need to use data {yi}ni=1 and {xi}ni=1 to estimate the “the-

oretical regression model” to get the “fitted/estimated model”;

• Then, assess whether each estimated parameter and the fitted model as a

whole are good or not.
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General Introduction

Figure: Data on Food Expenditure and Income
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General Introduction

Simple Linear Regression Model

E[y|x] = β1 + β2x (1)

where β1 is the intercept and β2 is the slope. The model is called “simple linear

regression model” because there is only one independent/explanatory variable

on the right-hand side and the model is linear in parameters β1 and β2. The

line in equation (1) is the “theoretical/true line”.

Figure: Linear Relationship between Average Food Expenditure and Income
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General Introduction

Figure: Conditional pdf’s for y at Alternative Levels of Income
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Assumptions on the “Theoretical/True” Model (Line)

First version of assumptions on the theoretical/true model:

• A1—Linearity: for each value of x, the mean value of y is given by

E[y|x] = β1 + β2x

• A2—Constant variance: for each value of x, the variance of distribution

of y is constant

V ar(y|x) = σ2

• A3—Uncorrelatedness: the sample values of y are all uncorrelated.

Cov(yi, yj) = 0 for all i 6= j

• A4—Constant x’s: x is not random and must take at least two differ-

ent values (more than one sample points to be used for estimation), y is

random.

• A5 (optional)—Normality: conditional on each value of x, y is normally

distributed

y|x ∼ N(β1 + β2x, σ
2)
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Assumptions on the “Theoretical/True” Model (Line)

Based on original true model, we define the random error term e as:

e = y − E[y|x] = y − β1 − β2x (2)

then by rearranging, we have the “second version” of the true model:

y = β1 + β2x+ e

And by equation (2), it is easy to show that

E[e|x] = 0
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Assumptions on the “Theoretical/True” Model (Line)

Figure: The Relationship between y, e and the “True” Regression Model

S. Liu (UCLA Summer School Econ 103) June 28, 2017 10 / 38



Assumptions on the “Theoretical/True” Model (Line)

Second version of assumptions on the theoretical/true model

• SR1: for each value of x, the value of y is

y = β1 + β2x+ e

• SR2: for each value of x,

E[e|x] = 0

which is stronger than simply assuming E(e) = 0.

• SR3: for each value of x, the conditional variance of the random error is

V ar(e|x) = σ2 =⇒ V ar(y|x) = σ2

y and e differ only by a constant due to SR5.

• SR4: the covariance between any pair of random errors,

Cov(ei, ej) = 0 for all i 6= j =⇒ Cov(yi, yj) = 0 for all i 6= j

• SR5: x is not random and must take at least two different values (more

than one sample points to be used for estimation), y is random. The

randomness of y comes from the randomness of e.
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Assumptions on the “Theoretical/True” Model (Line)

Second version of assumptions on the theoretical/true model

• SR6(Optional):

e ∼ N(0, σ2) =⇒ y|x ∼ N(β1 + β2x, σ
2)

• SR6 can give us normality, which will be useful to characterize the dis-

tributions that the statistics/moments associated with estimators follow,

and then conduct hypothesis testing.

• If SR6 does not apply, we are still able to get “normality” through central

limit theorem if we have large enough sample data.
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The “Fitted” Line: OLS Estimation

Notation for “fitted line”:

ŷ = b1 + b2x

⇐⇒
ŷi = b1 + b2xi for any observation xi, the estimated y is ŷi

To measure the “distance” between true observed yi and estimated

ŷi, we define the residual:

êi = yi − ŷi = yi − b1 − b2xi
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The “Fitted” Line: OLS Estimation

Figure: The Relationship between y, ê and Fitted Regression Line
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The “Fitted” Line: OLS Estimation

How to determine our “fitted/estimated line” is the best one? (as a

whole closest to all data points)

We use “sum of squared error” SSE, for one “fitted line”, we can calculate

residuals êi for all data points, then calculate SSE as:

SSE =

n∑
i=1

ê2
i

Suppose now we have two fitted lines:

• Line 1: ŷ∗i = b∗1 + b∗2xi, calculate ê∗i = yi − ŷ∗i and SSE1 =
∑n

i=1 ê
∗2
i ;

• Line 2: ŷ∗∗i = b∗∗1 + b∗∗2 xi, calculate ê∗∗i = yi− ŷ∗∗i and SSE2 =
∑n

i=1 ê
∗∗2
i .

then Line 1 is better than Line 2 ⇐⇒ SSE1 < SSE2.
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The “Fitted” Line: OLS Estimation

Figure: The Relationship between y, ê and Alternative Fitted Regression Line
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The “Fitted” Line: OLS Estimation

OLS: “Ordinary Least Square” Estimation

Given sample data {(xi, yi)}ni=1, choose b1 and b2 to minimize the “sum of

squares function”:

S(b1, b2) =

n∑
i=1

(yi − b1 − b2xi)2

The optimal (b1, b2) satisfies the following necessary conditions:

∂S(b1, b2)

∂b1
= −2

n∑
i=1

(yi − b1 − b2xi) = 0 (3)

∂S(b1, b2)

∂b2
= −2

n∑
i=1

xi(yi − b1 − b2xi) = 0 (4)
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The “Fitted” Line: OLS Estimation

(3) and (4) =⇒

b2 =

∑n
i=1(xi − x̄)(yi − ȳ)∑n

i=1(xi − x̄)2
(5)

b1 = ȳ − b2x̄ (6)

where

x̄ =

∑n
i=1 xi
n

and ȳ =

∑n
i=1 yi
n

For example, y is food expenditure (unit: $1000) and x is personal income

(unit: $1000/month), and we estimate b2 = 10.2 and b1 = 83.4, how to inter-

pret?

ŷi = 83.4 + 10.2xi

S. Liu (UCLA Summer School Econ 103) June 28, 2017 18 / 38



Alternative Theoretical Model Form

Alternative form: need transformation of original data

ln(y) = α+ βln(x) + e (7)

y = α+ βln(x) + e (8)

ln(y) = α+ βx+ e (9)

Comments:

• We always firstly take “ln” on original economic data;

• By taking “ln”, the coefficient may have more intuitive interpretation. For

example, if your model is (7):

β =
dln(y)

dln(x)
=
dy/y

dx/x
=
4y/y
4x/x

=
4y
4x

x

y
= ηyx (10)

so that, if estimator of β is b, how to interpret b?

• Alternatively, if your model is y = α+βx+ e, then what if we still want to

estimate ηyx (elasticity of variable y with respect to x) for different levels

of (x, y)? usually we calculate the elasticity at the “point of means” (x̄, ȳ).
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Alternative Theoretical Model Form

• If your model is (9), then how to interpret β?

β =
dln(y)

dx
=
dy/y

dx
=
4y/y
4x

then how to estimate ηyx (elasticity of variable y with respect to x) for

different levels of x?

For example, y is house price, x is house square feet, the estimated model

is:

ln(PRICE) = 10.839 + 0.00041︸ ︷︷ ︸
b

×SQFT

(1) The estimated semi-elasticity: b = 0.00041;

(2) The estimated elasticity is:

η̂ = b× SQFT = 0.00041× SQFT

(3) For a house with 4000 square feet, the estimated elasticity is 1.645.
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Properties of OLS Estimators

After obtaining OLS estimator, next is to assess the OLS estimators through

the following steps:

• Calculate related “theoretical moments” and characterize “theoretical dis-

tributions” of the OLS estimators;

• Use sample data to estimate the “theoretical moments” (if you cannot

calculate the theoretical moments directly);

• Provide interval estimation;

• Conduct hypothesis testing, either for each parameter separately or for the

whole model, to evaluate whether your fitted model is good or not.
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Properties of OLS Estimators

True model and estimated model are:

y = β1 + β2x+ e (11)

ŷ = b1 + b2x (12)

Distribution and Related Moments (expectations, variances, covari-

ances) of b1 and b2:

1. Expectation

•

b2 =

n∑
i=1

wi(yi − ȳ) =

n∑
i=1

wiyi −
n∑

i=1

wiȳ︸ ︷︷ ︸
=0

= β2 +

n∑
i=1

wiei (13)

where ȳ = β1 + β2x̄. Then

E(b2) = β2 by E(ei) = 0 (14)
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Properties of OLS Estimators

•
b1 = ȳ − b2x̄ = β1 + (β2 − b2)x̄ (15)

then

E(b1) = β1 (16)

Both estimators b1 and b2 are unbiased estimator. How to understand? If

we take the two averages of estimates b1 and b2 from many samples (the number

of samples converges to infinity), then the two averages will converge to β1 and

β2.

2. Variance and Covariance

If assumptions SR1− SR5 are correct, we have

V ar(b1) = σ2

∑n
i=1 x

2
i

n
∑n

i=1(xi − x̄)2
(17)
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Properties of OLS Estimators

V ar(b2) = σ2 1∑n
i=1(xi − x̄)2

(18)

Cov(b1, b2) = σ2 −x̄∑n
i=1(xi − x̄)2

(19)

Comments:

• the larger the variance term σ2, the greater the uncertainty in the statistical

model, and the larger the variances and covariance of the OLS estimators;

• the larger the sum of squares of variation of the independent variables∑n
i=1(xi − x̄)2, the smaller the variances of the least squares estimators

and the more precisely we can estimate the unknown parameters.
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Properties of OLS Estimators
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Properties of OLS Estimators

3. Probability Distribution of the OLS Estimators b1 and b2

• Normality Assumption: if we make the normality assumption (SR6)

about the error term e ∼ N(0, σ2), then the OLS estimators are normally

distributed:

b1 ∼ N
(
β1, σ

2

∑n
i=1 x

2
i

n
∑n

i=1(xi − x̄)2

)
(20)

b2 ∼ N
(
β2, σ

2 1∑n
i=1(xi − x̄)2

)
(21)

• Without Normality Assumption: if assumptions SR1-SR5 hold and

the sample size n is sufficiently large, then OLS estimators b1 and b2 have

distributions that approximate the normal distributions shown in (20)

and (21), by Central Limit Theorem.
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Properties of OLS Estimators

Why do we want to characterize the probability distributions of b1
and b2?

Because we want to (1) do hypothesis testing, e.g. if we get estimator b2, we

want to test whether the corresponding parameter β2 is significantly

different from zero; (2) provide interval estimation, i.e. confidence interval

of β2, not only point estimator b2.

Example of hypothesis testing (if (21) applies and V ar(b2) = σ2 1∑n
i=1(xi−x̄)2

is known):

H0 : β2 = 0;

H1 : β2 6= 0; orβ2 > 0; orβ2 < 0.
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Properties of OLS Estimators

4. Estimate Theoretical Moments (mainly variances and covariances

of OLS estimators)

In last example, we know the value σ2 thus know V ar(b2), but usually we

don’t know. Then what should we do?

• Estimate V ar(e) = σ2:

since V ar(e) = E(e2)− E(e)2 = E(e2), we use residuals êi,

σ̂2 =
1

n− 2

n∑
i=1

ê2
i (22)

and it can be proved E[σ̂2] = σ2. (22) is for simple regression model,

what if we have K parameters to estimate in multiple regression

model?
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Properties of OLS Estimators

• Estimate V ar(b1), V ar(b2), Cov(b1, b2):

V̂ ar(b1) = σ̂2

∑n
i=1 x

2
i

n
∑n

i=1(xi − x̄)2
(23)

V̂ ar(b2) = σ̂2 1∑n
i=1(xi − x̄)2

(24)

Ĉov(b1, b2) = σ̂2 −x̄∑n
i=1(xi − x̄)2

(25)

• The square roots of the estimated variances are the “standard errors” of b1
and b2:

Se(b1) =

√
V̂ ar(b1)

Se(b2) =

√
V̂ ar(b2)

• Estimated Variance-Covariance Matrix[
V̂ ar(b1) Ĉov(b1, b2)

Ĉov(b1, b2) V̂ ar(b2)

]
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Properties of OLS Estimators

But if we replace σ2 with σ̂2, will “normality” still apply?

• If using σ2, normality applies:

b2 − β2√
V ar(b2)

∼ N(0, 1) (26)

• If using σ̂2, “normality” will no longer apply:

b2 − β2√
V̂ ar(b1)

∼ tn−2 (27)
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Properties of OLS Estimators

To evaluate whether OLS estimators are good under some specific cases, we

have Gauss-Markov Theorem:

Under the assumptions SR1-SR5 of the linear regression model, the OLS es-

timators b1 and b2 are the Best Linear Unbiased Estimators (BLUE) for

β1 and β2. That is, b1 and b2 have the smallest variance within all linear and

unbiased estimators of β1 and β2.

Comments:

• The theorem does not say that b1 and b2 are the best of all possible esti-

mators;

• When comparing two linear and unbiased estimators, we always want to

use the one with the smaller variance, since that estimation rule gives us

the higher probability of obtaining an estimate that is close to the true

parameter value;

• Note that Gauss Markov Theorem does not depend on SR6 (normality

assumption).
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Estimation of Nonlinear Relationship

More about nonlinear relationship: the simple linear regression model can

be used to account for nonlinear relationship between variables.

1. y and x can be transformations of the basic economic variables,

involing logarithms, squares, cubes or reciprocals, and etc.

Example: we want to research how house price is correlated/determined by

square feet of the house?

• Originally we may assume:

PRICE = β1 + β2SQFT + e (28)

But this may not be consistent with the data pattern and also it may be

reasonable to assume that larger and more expensive homes have a higher

value for an additional square foot of living area than smaller, less expensive

homes, that is, the slope β2 may vary from point to point.
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Estimation of Nonlinear Relationship

Figure: Quadratic Relationship
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Estimation of Nonlinear Relationship

We can build this pattern into our model in two ways:

• a quadratic equation in which the explanatory variable is SQFT 2

PRICE = β1 + β2SQFT
2 + e (29)

• a log-linear equation in which the dependent variable is ln(PRICE)

ln(PRICE) = β1 + β2SQFT + e (30)

For (29) and (30), how to interpret β2, and how to get elasticity of PRICE

w.t. SQFT at specific level (SQFT, PRICE)?
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Estimation of Nonlinear Relationship

If the estimated quadratic equation is:

PRICE = 55776.56 + 0.0154SQFT 2 (31)

the estimated slope is:

d(PRICE)

d(SQFT )
= 2× 0.0154× SQFT (32)

the elasticity is:

η̂ = slope× SQFT

PRICE
= 2× 0.0154× SQFT × SQFT

PRICE
(33)

Use one data point (SQFT = 2000, PRICE = $117461.77), the elasticity is

1.05, meaning a 1% in house size will increase house price by 1.05%.

Take care of units of economic variables, in this case, unit of PRICE

is $1, but it may also be $1, 000.
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Estimation of Nonlinear Relationship

2. y and/or x can be indicator variables that only take values zero

and one.

• Indicator variable is usually used to represent qualitative characteristic,

such as gender (male or female), race, or location;

• For example

UTOWN =

{
1 if house is in University Town

0 if house is in Golden Oaks

PRICE = β1 + β2UTOWN + e
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Estimation of Nonlinear Relationship

Figure: Distributions of House Prices
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Estimation of Nonlinear Relationship

• When an indicator variable is used in a regression, it is important to firstly

write out the regression function for the different values of the indicator

variable, to help interpret the parameters

E[PRICE] =

{
β1 + β2 if UTOWN = 1

β1 if UTOWN = 0

• The estimated regression is:

̂PRICE = b1 + b2UTOWN

= 215.733 + 61.51× UTOWN

=

{
277.242 if UTOWN = 1

215.733 if UTOWN = 0

• How to interpret β2 and b2:

β2 = E[PRICE]Universitytown − E[PRICE]Goldenoaks (34)

b2 = PRICEUniversitytown − PRICEGoldenoaks (35)
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