
Lecture 4: Prediction, Goodness-of-Fit and

Modelling Issues

Shuo Liu

UCLA Summer School Econ 103

July 2, 2017

S. Liu (UCLA Summer School Econ 103) July 2, 2017 1 / 28



Outline

1 Least Square Prediction

2 Measure Goodness-of-Fit

3 Reporting the Results

4 Modelling Issues: Choosing Functional Form

S. Liu (UCLA Summer School Econ 103) July 2, 2017 2 / 28



Least Square Prediction

Assume we use sample data {(xi, yi)}ni=1 to estimate simple linear regression

model:

y = β1 + β2x+ e (1)

=⇒
ŷ = b1 + b2x (2)

• Assume (x0, y0) is a data point outside the sample data, and given x0, we

want to use estimated model to predict y0;

• We must assume that y0 and x0 are related to one another by the same

regression model that describes our sample data;

y0 = β1 + β2x0 + e0 (3)

where e0 is a random error.
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Least Square Prediction

• It is intuitive that the least square (point) predictor of y0 comes from the

fitted line:

ŷ0 = b1 + b2x0 (4)

• To define how well this predictor performs, we define the forecast error:

f = y0 − ŷ0 = (β1 + β2x0 + e0)− (b1 + b2x0) (5)

and we have

E(f) = E(β1 +β2x0 +e0)−E(b1 +b2x0) = (β1 +β2x0 +0)−(β1 +β2x0) = 0

(6)

what does (6) mean?

• If SR1-SR5 hold, ŷ0 is also the best linear unbiased predictor (BLUP) of

y0.
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Least Square Prediction

• To provide more information on reliability of the predictor, we also need

to get variance of the forecast f

V ar(f) = V ar(y0 − ŷ0) = σ2

[
1 +

1

n
+

(x0 − x̄)2∑n
i=1(xi − x̄)2

]
(7)

The variance of forecast is smaller when:

1. the uncertainty in the random error σ2 is smaller;

2. the sample size n is larger;

3. the sum of squares of deviation from sample mean of explanatory

variable
∑n

i=1(xi − x̄)2 is larger;

4. the value of (x0 − x̄)2 is small.
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Least Square Prediction

• Again, if we do not know σ2, in practice, we use σ̂2:

ˆV ar(f) = σ̂2

[
1 +

1

n
+

(x0 − x̄)2∑n
i=1(xi − x̄)2

]
(8)

and the standard error of the forecast is:

Ŝe(f) =

√
ˆV ar(f) (9)

With point predictor and standard error of forecast, given α, we can

construct 100(1− α)% confidence interval as:[
ŷ0 − tcŜe(f), ŷ0 + tcŜe(f)

]
(10)

where

P (−tc < tn−2 < tc) = 1− α (11)
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Least Square Prediction
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Least Square Prediction

The estimated variance of the forecast error is also:

ˆV ar(f) = σ̂2

[
1 +

1

n
+

(x0 − x̄)2∑n
i=1(xi − x̄)2

]
= σ̂2 +

σ̂2

n
+ (x0 − x̄)2 σ̂2∑n

i=1(xi − x̄)2

= σ̂2 +
σ̂2

n
+ (x0 − x̄)2 ˆV ar(b2)
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Measure Goodness-of-Fit

• Besides “single hypothesis testing”, we can also obtain the measure of

goodness-of-fit to evaluate the model:

1. whether the variation of explanatory variable x “explain” as much

as possible the variation of dependent variable y;

2. whether the model fits the sample data well.

• variation means the “sum of squares of deviation from corresponding sam-

ple mean”:
∑n

i=1(x− x̄)2

• Theoretical Model:

yi = E(yi)︸ ︷︷ ︸
explainable

+ ei︸︷︷︸
unexplainable

(12)

where E(yi) is the explainable/systematic part and ei is the unexplain-

able/unsystematic part.

• Analogously in Fitted Model:

yi = ŷi + êi (13)
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Measure Goodness-of-Fit

Then we further have for each observed data point (xi, yi):

yi − ȳ︸ ︷︷ ︸
total deviation

= (ŷi − ȳ)︸ ︷︷ ︸
explained component

+ êi︸︷︷︸
unexplained component

(14)
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Measure Goodness-of-Fit

To further get total variation:
n∑

i=1

(yi − ȳ)2

︸ ︷︷ ︸
SST

=

n∑
i=1

(ŷi − ȳ + êi)
2

=

n∑
i=1

(ŷi − ȳ)2 +

n∑
i=1

êi
2 + 2

n∑
i=1

[(ŷi − ȳ) êi]

=

n∑
i=1

(ŷi − ȳ)2

︸ ︷︷ ︸
SSR

+

n∑
i=1

êi
2

︸ ︷︷ ︸
SSE

• SST: total sum of squares, same as the sample variance of dependent vari-

able y that is to be explained s2
y =

∑n
i=1(yi−ȳ)2

n−1 ;

• SSR: sum of squares due to the regression, replacing observed yi with pre-

dicted ŷi;

• SSE: sum of squares due to error.
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Measure Goodness-of-Fit

Why do we have 2
∑n

i=1 [(ŷi − ȳ) êi] = 0?

n∑
i=1

[(ŷi − ȳ) êi] =

n∑
i=1

[(b1 + b2xi − ȳ) êi]

= b1

n∑
i=1

êi + b2

n∑
i=1

(xiêi)− ȳ
n∑

i=1

êi

• OLS estimation first order condition ∂S(b1,b2)
∂b2

= 0 gives us:

∂S(b1, b2)

∂b2
= −2

n∑
i=1

xi(yi − b1 − b2xi) = −2

n∑
i=1

(xiêi) = 0 (15)

• OLS estimation first order condition ∂S(b1,b2)
∂b1

= 0 gives us:

∂S(b1, b2)

∂b1
= −2

n∑
i=1

(yi − b1 − b2xi) = −2

n∑
i=1

êi = 0 (16)

S. Liu (UCLA Summer School Econ 103) July 2, 2017 12 / 28



Measure Goodness-of-Fit

Then to evaluate the model in the sense that whether the (estimated) vari-

ation from regression “explains” large part of total (observed) varia-

tion, we define the coefficient of determination:

R2 =
SSR

SST
=
SST − SSE

SST
= 1− SSE

SST
(17)

• The closer R2 is to 1, the closer SSR =
∑n

i=1(ŷi − ȳ)2 is to SST =∑n
i=1(yi− ȳ)2, to closer sample value yi is to the fitted regression equation

ŷi;

• What if R2 = 1?

• What if R2 is closer to 0?

• Note that in practice, to evaluate the model, we put less weight on R2

than the “significance” of parameters.
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Measure Goodness-of-Fit

• More intuitively, we can interpret R2 as: the proportion of the variation in

y about its mean that is explained by the regression model;

• R2 is correlated with the sample correlation coefficient:

rxy =
sxy
sxsy

(18)

where

sx =

√∑n
i=1(xi − x̄)2

n− 1
(19)

sy =

√∑n
i=1(yi − ȳ)2

n− 1
(20)

sxy =

√∑n
i=1(xi − x̄)(yi − ȳ)

n− 1
(21)
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Measure Goodness-of-Fit

Two relationships between R2 and rxy:

• r2
xy = R2;

• R2 can also be computed as the square of the sample correlation coefficient

between yi and ŷi = b1 + b2xi, as given fixed sample data, b1 and b2 are

fixed.

Also we define adjusted-R2 (usually used to evaluate multi-regression model)

as:

R̄2 = 1− SSE/(n−K)

SST/(n− 1)
(22)

where K is number of population parameters in the linear model.
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Reporting the Results

If we do a regression, the key ingredients to report are:

• the OLS estimators;

• the standard errors of OLS estimators (or equivalently the t-values (the

value of t statistic));

• an indication of statistical significance;

• the coefficient of determination R2.
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Reporting the Results

Food expenditure example, we have:

• FOODEXP : weekly food expenditure by a household of size 3, in dollars;

• INCOME: weekly household income, in $100.

Report the result:

̂FOODEXP
(se)

= 83.416
(43.41)

+ 10.21
(2.09)∗∗∗

INCOME, R2 = 0.385 (23)
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Reporting the Results

where

Based the output table, if b1 = 83.416 and b2 = 10.21, what are the values of

the following items?

• ˆV ar(b1), ˆV ar(b2)?

• σ̂2 =
∑n

i=1 êi
2

n−2 ?

• ...
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Choosing Functional Form
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Choosing Functional Form

SLOPE =
dy

dx
, ηyx =

dy/y

dx/x
=
dy

dx

x

y
= SLOPE ∗ x

y
(24)
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Choosing Functional Form

Food expenditure example:

Model 1:

FOODEXP = β1 + β2INCOME (25)

=⇒
̂FOODEXP

(se)
= 83.416

(43.41)
+ 10.21

(2.09)∗∗∗
INCOME, R2 = 0.385 (26)

How to interpret b2 = 10.21?

Model 2:

FOODEXP = β1 + β2ln(INCOME) (27)

=⇒

̂FOODEXP
(se)

= −97.19
(84.24)

+ 132.17
(28.8)∗∗∗

ln(INCOME), R2 = 0.357 (28)

How to interpret b2 = 132.17? How much will household additionally spend on

food from an additional $100 income? Is it still constant for households of all

income levels?
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Choosing Functional Form

Continue with Model 2:

d ̂FOODEXP

dln(INCOME)
= 132.17 =

d ̂FOODEXP

dINCOME
INCOME (29)

=⇒
d ̂FOODEXP

dINCOME
=

d ̂FOODEXP
dln(INCOME)

INCOME
=

132.17

INCOME
(30)

How about a household with $2000 weekly income? remember the unit of

INCOME is $100.
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Choosing Functional Form

Up to now, we need to choose a functional form (evaluate whether the assumed

model form is good or not):

• consistent with economic theory;

• population parameters are “significant” (significantly different from zero);

• fit the data well/explain large proportion of total variation;

• Next: satisfy assumptions SR1-SR6.
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Choosing Functional Form

For simple linear regression model:

y = β1 + β2x+ e (31)

We will mainly focus on the SR3, SR4 and SR6.

• SR3(homoskedasticity): for each value of x, the conditional variance of

the random error is

V ar(e|x) = σ2 =⇒ V ar(y|x) = σ2

• SR4(no serial correlation): the covariance between any pair of random

errors,

Cov(ei, ej) = 0 for all i 6= j =⇒ Cov(yi, yj) = 0 for all i 6= j

• SR6(normality):

e ∼ N(0, σ2) =⇒ y|x ∼ N(β1 + β2x, σ
2)
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Choosing Functional Form

For testing SR3(homoskedasticity), we can refer to diagnostic residual plots:

random and homoskedastic residuals:
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Choosing Functional Form

Heteroskedastic residuals:
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Choosing Functional Form

For testing SR4(no serial correlation), we can use the obtained residual data

{êi}ni=1 to do the regression:

êi = β1 + β2 ˆei−1 + wi (32)

If β1 and β2 are significant, we can conclude residuals are serially correlated.
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Choosing Functional Form

For testing SR6(normality), we can refer to Jarque-Bera (JB) Test to test

normality (there are also many other formal tests):

JB =
n

6

(
S2 +

(K − 3)2

4

)
(33)

where n is sample size, S is skewness, K is kurtosis. (standard normal distri-

bution has skewness as zero, kurtosis as 3)

• When residuals are normally distributed (SR6 applies), JB statistic ∼ χ2
(2)

• We set H0 : residuals are normally distributed, then we reject H0 when the

value of JB statistic exceeds a critical value of χ2
c(2) (remember χ2 test is

always right-tail test)

• For example: for α = 0.05, critical value is 5.99; for α = 0.01, critical value

is 9.21; JB = 6.21; Then:

1. since 6.21 > 5.99, we reject SR6 at the 5% level of significance;

2. since 6.21 < 9.21, we can not reject SR6 at the 1% level of signifi-

cance.

• Remember “significance level” can be interpreted as: probability of Type

I error.
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