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Least Square Prediction

Assume we use sample data {(z;,y;)}7~, to estimate simple linear regression
model:

y=p51+ B +e (1)

7y =01 + bax (2)

e Assume (xg,yo) is a data point outside the sample data, and given zg, we
want to use estimated model to predict yo;

e We must assume that yy and zg are related to one another by the same
regression model that describes our sample data;

Yo = B1 + Bawo + €o (3)

where eg is a random error.
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Least Square Prediction

e It is intuitive that the least square (point) predictor of yo comes from the
fitted line:
Yo = b1 + b2z (4)

e To define how well this predictor performs, we define the forecast error:

f=1v0— 9o = (B1+ Pazo+ eo) — (b1 + bazo) (5)
and we have

E(f) = E(p1+ Pazo+eo) — E(bi +baxg) = (B1+ B2xo+0) — (814 F220) =0
(6)

what does (6) mean?
e If SR1-SR5 hold, g is also the best linear unbiased predictor (BLUP) of
Yo-
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Least Square Prediction

e To provide more information on reliability of the predictor, we also need
to get variance of the forecast f
(o — )°

N 1
Var(f) =Var(yo— o) = o2 |1+ - + S

e (T — T)? @)

The variance of forecast is smaller when:
1. the uncertainty in the random error o
2. the sample size n is larger;
3. the sum of squares of deviation from sample mean of explanatory
variable > | (z; — Z)? is larger;
4. the value of (z¢ — Z)? is small.

2 is smaller;
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Least Square Prediction

2 2

e Again, if we do not know o<, in practice, we use 6*:

Var(f) = 62 [1 + % + M} ®)

and the standard error of the forecast is:

Se(f) =/ Var(f) (9)

With point predictor and standard error of forecast, given «, we can
construct 100(1 — a)% confidence interval as:

[0 — teSe(f). o + teSe(f)] (10)

where
Pt <tho<t)=1—a« (11)
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Least Square Prediction
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Least Square Prediction

The estimated variance of the forecast error is also:

N . 1 (Z‘o—f)g
Var(f) =62 |14+ — + =n -

no YT - )2

52 52

5 O 2 G

n (= ) >im (T — T)?

2, 0° 277

=0 +Z+(xofz) Var(bs)
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Measure Goodness-of-Fit

e Besides “single hypothesis testing”, we can also obtain the measure of
goodness-of-fit to evaluate the model:
1. whether the variation of explanatory variable x “explain” as much
as possible the variation of dependent variable y;
2. whether the model fits the sample data well.
e variation means the “sum of squares of deviation from corresponding sam-
ple mean”: Y " | (z —Z)?
e Theoretical Model:

vi= Eyi) + € (12)
explainable  unexplainable

where E(y;) is the explainable/systematic part and e; is the unexplain-
able/unsystematic part.

e Analogously in Fitted Model:
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Measure Goodness-of-Fit

Then we further have for each observed data point (z;,y;):

vi—y = (Yi —9) + € (14)
total deviation explained component  unexplained component
¥

&, = y; — 5= unexplained component

* A

! §= by + box
I

I

I

g —

Yi

I
I ¥ = explained component
I _

)
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leasure Goodness-of-Fit

To further get total variation:

S wi—9)?=> Wi —y+6)
i=1 i=1
SST
= Wi—9)*+ Y &P +2) (i —9)él
i=1 =1 =1
= Z(yl -9+ Z é”
=1 1=1
SSR SSE

e SST: total sum of squares, same as the sample variance of dependent vari-
E?=1(yi_37)2 .

able y that is to be explained 35 e
e SSR: sum of squares due to the regression, replacing observed y; with pre-
dicted y;

e SSE: sum of squares due to error.

S. Liu (UCLA Summer Schoc July 2, 2017



Measure Goodness-of-Fit

Why do we have 237" | [(4; — y) €] = 0?
(G =) é] =D [(br + bows — §) €]

1 i=1

=b Ze} + by Z($iéi) - ’ﬂzéi
i=1 i=1 i=1

K2

8S(b1,

e OLS estimation first order condition b2) — ¢ gives us:

M = -9 En:xl(yl — b — ngl) =-2 En:(xzél) =0 (15)

Obs i=1 i=1
e OLS estimation first order condition %bll’bg) = 0 gives us:
(b1, bo) -
M——zz Yi — b1 —bywi) = =2 € =0 (16)

0by
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Measure Goodness-of-Fit

Then to evaluate the model in the sense that whether the (estimated) vari-
ation from regression “explains” large part of total (observed) varia-
tion, we define the coefficient of determination:

_ SSR _ SST - SSE _1_ SSE (17)

R2
SST SST SST

e The closer R? is to 1, the closer SSR = I  (4; — 9)? is to SST =
St (yi — §)?, to closer sample value y; is to the fitted regression equation

Ui
e What if R? = 17
e What if R? is closer to 07

e Note that in practice, to evaluate the model, we put less weight on R?
than the “significance” of parameters.
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leasure Goodness-of-Fit

e More intuitively, we can interpret R? as: the proportion of the variation in
y about its mean that is explained by the regression model;

e RZis correlated with the sample correlation coefficient:

Sz

545y

<

where

Z?:l(xi —z)?

n—1
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leasure Goodness-of-Fit

Two relationships between R? and ry,:
° riy = R2;
e RZ2 can also be computed as the square of the sample correlation coefficient

between y; and y; = by + box;, as given fixed sample data, b; and by are
fixed.

Also we define adjusted-R? (usually used to evaluate multi-regression model)

aS: SSE/(n - K)

SST/(n—1)

where K is number of population parameters in the linear model.

R?=1- (22)
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Reporting the Results

If we do a regression, the key ingredients to report are:

the OLS estimators;

the standard errors of OLS estimators (or equivalently the t-values (the
value of t statistic));

an indication of statistical significance;

the coefficient of determination RZ2.
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Reporting the Results

Food expenditure example, we have:

e FOODEX P: weekly food expenditure by a household of size 3, in dollars;
e INCOME: weekly household income, in $100.

. reg food exp income

Source 58 ds M Number of obs = 40

FLoO1, 28) =  23.7%

Model 150626.954 1 150626.984 DProb > F = 0.0000

Residual 204505.176 38 2013.2941 R-squazed = 0.3850

2dj B-squared = 0.3638

Total 495132.16 35 12695.6964 Root MSE = 89.517
food_exp Coef.  Std. Erz. ® o5l [55% Conf. Intezval
income 10.20964  2.093264 4.82  0.000 5.972052 14.44723
_cons 22.416  43.41016 1.92  0.062 -4.463279 171.2953

Report the result:

FOODEXP = 83416+ 1021 INCOME, R2=0.385 (23)
(se) (43.41)  (2.09)***
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Reporting the Results

where

* indicates significant at the 10% level
** indicates significant at the 5% level

*** indicates significant at the 1% level

Based the output table, if by = 83.416 and b, = 10.21, what are the values of
the following items?

o Var(by), Var(by)?

n 5.2
o 62 = Zizifiy
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Choosing Functional Form

y Slope at
pOinL Y2, Xo

Slope at

|
|
|
|
|
|
|
|
|
Xy Xo X

A nonlinear relationship between food expenditure and income.
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Choosing Functional Form

dy dy/y dyx T
LOPE = — = = —=—=SLOPE % — 24
SLO dz e dx/z  dry SLOPE « y (24)

Table 4.1 Some Useful Functions, their Derivatives, Elasticities and Other

Interpretation

Name Function Slope = dy/dx Elasticity

. x

Linear ¥y =Bi + Bax B2 ﬁz;
Quadratic y =81+ Bax® 2Box (ZBzx)g
Cubic ¥ = Bi+ Box’ 3B’ (3;31;2)5

Log-Log In(y) = By + Baln(x) B2 B2

Log-Linear In(y) = B1 + Bax Bay Bax
or, a | unit change in x leads to (approximately) a 100 ;% change in y

1 1

Linear-Log ¥ = Bi1 + Baln(x) Bz; Bz;

or, a 1% change in x leads to (approximately) a 3,/100 unit change in y
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Choosing Functional Form

Food expenditure example:

Model 1:
FOODEXP =1+ p2INCOME (25)
— o
FOODEXP =83416+ 10.21 INCOME, R? =0.385 (26)
(se) (43.41)  (2.09)***

How to interpret by = 10.217

Model 2:
FOODEXP = (31 + B2ln(INCOME) (27)

FOO/DEXP =-97.19+ 132.17In(INCOME), R? =0.357 (28)
(se) (84.24) (28.8)***
How to interpret by = 132.17?7 How much will household additionally spend on
food from an additional $100 income? Is it still constant for households of all
income levels?

S. Liu (UCLA Summer School Econ 103 July 2, 2017



Choosing Functional Form

Continue with Model 2:

dFOODEXP dFOODEXP
APOGDEALT 39 17— LYYV oM E 2
din(INCOME) aiNconE NeO (29)
—t .
dFOODEXP _ dimincorm 13217

dINCOME =~ INCOME ~ INCOME (30)

How about a household with $2000 weekly income? remember the unit of
INCOME is $100.
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Choosing Functional Form

Up to now, we need to choose a functional form (evaluate whether the assumed
model form is good or not):

e consistent with economic theory;

population parameters are “significant” (significantly different from zero);

fit the data well/explain large proportion of total variation;

Next: satisfy assumptions SR1-SR6.
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Choosing Functional Form

For simple linear regression model:
y=pP1+ Pz +e (31)

We will mainly focus on the SR3, SR4 and SR6.

¢ SR3(homoskedasticity): for each value of x, the conditional variance of

the random error is
Var(elr) = 0> = Var(ylz) = ¢*

e SR4(no serial correlation): the covariance between any pair of random
errors,

Cou(e;,e;) =0 foralli#j = Cov(y;,y;) =0 foralli##j
¢ SR6(normality):

e~ N(0,0%) = ylz ~ N(B1 + oz, 0?)
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Choosing Functional Form

For testing SR3(homoskedasticity), we can refer to diagnostic residual plots:

random and homoskedastic residuals:

3_ .
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Choosing Functional Form

Heteroskedastic residuals:

Linear-Log Model Residuals
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Choosing Functional Form

For testing SR4(no serial correlation), we can use the obtained residual data
{é;}7_; to do the regression:

€ = P1+ Paeil1 +wy (32)

If 8, and fs are significant, we can conclude residuals are serially correlated.
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Choosing Functional Form

For testing SR6(normality), we can refer to Jarque-Bera (JB) Test to test
normality (there are also many other formal tests):

JB = % <52 + (K;?’)Z) (33)

where n is sample size, S is skewness, K is kurtosis. (standard normal distri-
bution has skewness as zero, kurtosis as 3)

e When residuals are normally distributed (SR6 applies), JB statistic ~ Xé)
o We set Hj : residuals are normally distributed, then we reject Hy when the
value of JB statistic exceeds a critical value of Xi@) (remember x? test is
always right-tail test)
e For example: for a = 0.05, critical value is 5.99; for o = 0.01, critical value
is 9.21; JB = 6.21; Then:
1. since 6.21 > 5.99, we reject SR6 at the 5% level of significance;
2. since 6.21 < 9.21, we can not reject SR6 at the 1% level of signifi-
cance.

e Remember “significance level” can be interpreted as: probability of Type
I error.
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