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Systemic search friction is an important liquidity factor which drives all corporate
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spread loading. To explain this cross-sectional heterogeneity, we propose a measure of
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private valuation and inventory position for each bond. Using transaction-level data,
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1 Introduction

The U.S. corporate bond market is an important source of financing for firms,! and it has
a decentralized over-the-counter (OTC) structure.? Empirical studies starting from Collin-
Dufresn, Goldstein, and Martin (2001) document that there is a systemic non-default com-
ponent in all corporate bonds’ yield spread changes over time. This component can not
be explained by bond, firm or macroeconomic-specific fundamentals. Later studies show
that this systemic component is closely related to a market-wide liquidity factor. Motivated
by the theoretical rationalization on that OTC market frictions drive the liquidity-related
part of transaction price in decentralized markets, Friewald and Nagler (2019) empirically
show that OTC market frictions, namely systemic inventory, search and bargaining frictions,
jointly explain a large proportion of the systemic component. However, to our best knowl-
edge, there have been very few papers focusing on bonds’ heterogeneous yield spread loading
on those liquidity-related frictions, and studying which market-structure factors can explain
this cross-sectional heterogeneity.

In this paper, we focus on explaining bonds’ heterogeneous yield spread loading on sys-
temic search friction.® Since systemic search friction is one type of market-wide liquidity
factor, we also call this yield spread loading as “liquidity risk from search friction” or “beta
on search friction”. Based on results in relevant papers, it is important to study the role of
systemic search friction in driving corporate bonds’ transaction price. For example, Feld-
hittter (2012) predicts that the premium due to search cost explains more than 10% of
unexplained level of credit spread, through estimating a structural model; Friewald and

Nagler (2019) find that systemic search friction explains 6.3% of the unexplained systemic

!Based on statistics from Securities Industry and Financial Markets Association (SIFMA), the new is-
suances of U.S. corporate bonds constitutes on average 65% of new capital issuance through 2009-2019, and
the market total outstanding amount reached $9.6 trillion by 2019.

2Although U.S. corporate bond market has experienced a steady growth in centralized electronic trans-
actions in recent years, the proportion of electronic transactions still remains low. For example, O’Hara and
Zhou (2021) shows that by 2017, only around 13% of notional amounts or 25% of trades happen via a main
electronic venue, MarketAxess. And this platform accounts for 85% of market share among all electronic
trading platforms for U.S. corporate bonds. Therefore the majority of corporate bond transactions still
remain voice-based and happen in a decentralized structure.

3In this paper, we define systemic search friction as the average level of search friction across all bonds at
each time point, similar as Friewald and Nagler (2019). Therefore, at each time point, the value of systemic
search friction is same for all bonds and is also positively correlated with the value of each bond’s own search
friction.



component of yield spread changes. It is also important to study bond-level liquidity risk
from search friction, because, based on our sample, there are 61% of bond-and-year* having
yield spread increase with search friction (liquidity risk takes negative value®), and the other
pairs of bond-and-year have yield spread decrease with search friction (liquidity risk takes
positive value). Within the negative-liquidity-risk bonds, a higher absolute value of liquidity
risk implies that the bond’s yield spread increases by higher amount for per unit increase
in systemic search friction. A one standard deviation increase in the absolute value is on
average associated with 8.4 bps increase in the level of yield spread, across all subperiods.
This compensation for liquidity risk from search friction is highest in the Post-crisis period®
when it is equal to 34 bps, and the second highest is equal to 24 bps, which happens in the
Crisis period; correspondingly, within the positive-liquidity-risk bonds, since these bonds
can be used to hedge search friction risk, a higher absolute value of liquidity risk implies that
the bond’s yield spread decreases more for per unit increase in search friction. Therefore,
explaining the cross-sectional heterogeneity in bond’s liquidity risk from search friction will
help explain the cross-section of yield spread levels.

To explain the cross-sectional heterogeneity, we propose a measure of bond misallocation
which is defined as the covariance of bond-traders’ two idiosyncratic states: private-valuation
type for holding a bond and inventory position on the bond. Similar as Duffie, Garleanu,
and Pedersen (2005), private valuation is same as traders’ idiosyncratic preference for a
bond, which is sourced from each trader’s balance sheet cost, hedging liquidity need, dash
for cash, etc. A trader, whose private-valuation type for a bond is lower (higher) than other
traders, more prefers holding cash (the bond) to holding the bond (cash). Therefore, the
covariance above describes, for each bond-and-period, how the bond’s positions are allocated
among traders with different preferences. In a frictionless market with no search friction, all

positions are held by traders with the highest private-valuation type(s). However, in OTC

4For each pair of bond j and year y, we collect all transactions of bond j happening within a three-year
time window [y — 2, y] and use the observations to estimate bond j’s liquidity risk from search friction within
time window [y — 2,y].

5Later we will show that liquidity risk takes the same sign with the derivative of bond price with respect
to search friction. Since price moves in opposite direction with yield spread, when a bond’s liquidity risk
takes a negative (positive) value, the bond’s price decreases (increases) with search friction and its yield
spread increases (decreases) with search friction.

6We follow Bessembinder, Jacobsen, Maxwell, and Venkataraman (2018) to divide the whole sample
period into five subperiods: Pre-crisis (Jan 2006-Jun 2007), Crisis (Jul 2007-Apr 2009), Post-crisis (May
2009-Jun 2010), Regulation (Jul 2010-Mar 2014), Volcker (post April 1, 2014).



markets with search frictions, there always exist some positions being held by traders who
should have not held the positions in a counterfactual frictionless market. Relative to the
frictionless scenario, those positions in OTC markets are regarded as “misallocated”, and
our proposed measure is able to capture the amount of such misallocated positions. Under
a lower (higher) value of this covariance, there are more (fewer) traders with lower private
valuations holding the bond in their inventories, which indicates a higher (lower) level of
bond misallocation.

Theoretically and empirically, we show that, level of bond misallocation is cross-sectionally
correlated with bonds’ heterogeneous liquidity risk from search friction. This correlation is
specific to assets which are traded in decentralized market, because it is sourced from traders’
costly searching activity. Our analysis contains the following steps:

First, we use an enhanced version of U.S. Corporate Bond TRACE data, which is pro-
vided by FINRA, to test whether bonds have significantly heterogeneous liquidity risk from
search friction. The data allows us to identify the two counterparties for each realized trans-
action.” We use the length of intermediation chain as a metric of the over-the-counter search
friction, which is rationalized in Shen, Wei, and Yan (2018), Neklyudov and Sambalaibat
(2018) and Hugonnier, Lester, and Weill (2020). The length of intermediation chain is defined
as the number of traders (who are the identified FINRA’s member firms in data) providing
intermediation service for a transaction of some volume of a bond between an initial seller
and a final buyer.® The average length of intermediation chain across all bonds is expected
to decrease with systemic search friction, because (i) lower search friction encourages more
traders to buy and sell same volume of bond at different prices to gain intermediation profit,
thus raising the intensity of reallocations between traders, or (ii) a larger intermediation sec-
tor, which includes traders trading on both buy and sell sides, more facilitates transactions,

9

thus reducing search friction.” Then we estimate bond-specific liquidity risk from search

"In this data, trading counterparties who are FINRA’s member firms are mostly broker-dealers, and
in most related papers, such counterparties are identified as “dealers”; trading counterparties who are not
FINRA’s member firms are outside institutional or retail investors and they are identified as “customers”.

8In data, we identify initial sellers (final buyers) as the investors who are not FINRA’s member firms and
sell bonds to (buy bonds from) FINRA’s member firms.

9As in Friewald and Nagler (2018), we do not discuss the endogeneity issue between length of intermedi-
ation chain and level of search friction. We only focus on the negative correlation between the two moments.
Since length of intermediation chain is a more explicit and computable measure, we therefore use it as a
measure of search friction which is more difficult to observe.



friction in a multi-factor model. In the cross-section of bonds, the standard deviation of the
estimated liquidity risk is more than three times of its mean level.

Second, we build a search-and-match model to study which market-structure factors can
explain the heterogeneity in bonds’ liquidity risk from search friction. The model predicts
that if a bond is more misallocated among its traders, the bond’s price will be less sensitive
to change in systemic search friction, regardless whether the bond’s price moves negatively
or positively with systemic search friction. This negative correlation between bond misallo-
cation and absolute value of yield spread loading on search friction can be attributed to how
much the marginal gain from per transaction (M Gr) contributes to the marginal gain from
searching (M Gg). In OTC markets with no central exchange, traders optimally adjust their
idiosyncratic searching activities to locate potential trading counterparties, so that in equi-
librium, the marginal gain from searching (M Gg) equals its marginal cost (M Cs). Because
marginal cost (MCy) is positively correlated with systemic search friction, when systemic
search friction increases, both the marginal cost and marginal gain increase. The marginal
gain from searching (M Gy) can further be decomposed into two parts: the likelihood of trade
happening (LT') conditional on searching and the marginal gain from per transaction (MGr)
conditional on trade happening, i.e., MCs = MGg = LT x MGr. The likelihood of trade
happening (LT) is positively correlated with how bond positions are misallocated among
all traders. The marginal gain from per transaction (MGr) depends on the gap between
a trader’s private valuation and her realized transaction price. When a bond’s positions
are more misallocated such that more lower-private-valuation traders hold the bond, for all
traders as a whole, they have a stronger incentive to invest in higher searching intensity to
reallocate the bond positions among themselves. In this case, it will be faster for every trader
to meet a counterparty with positive trading surplus, i.e., the likelihood of trade happening
(LT) is high. Therefore, at each given level of systemic search friction, the contribution of
the likelihood of trade happening (LT') to the marginal gain from searching (M Gy) is also
high. By equality MCs = MGg = LT x MGy, for per unit change in search friction (i.e.,
marginal cost of searching activity (M Cys)), the marginal gain from per transaction (M Gr),
which is directly associated with realized transaction price, will change correspondingly by
lower magnitude.

A more intuitive example is, assume there is a trader who holds some position of a bond

and has a high “dash for cash”. The trader will obtain a very low utility unless she is able



to offload her holding position to other traders before some specific time. For this trader to
succeed in selling the bond to others, it is crucial that the other traders, at least those with
positive trading surplus with her, choose high search intensity, which raises the probability
that the trader meets a trading counterparty in a short time. The other traders will choose
high search intensity either when (i) the bond is more misallocated within the market so
that the likelihood of trade happening (L7') conditional on searching is high enough, or
when (ii) the marginal gain from per transaction (M Gr) is high enough conditional on trade
happening. Suppose the level of bond misallocation is low such that the first term LT is
low, when systemic search friction increases (i.e. LT x MGy increases), the only way by
which the trader can motivate other traders to choose high search intensity and maintains
the easiness of trade is to accept a much lower sale price than before, i.e., by raising the
second term M Gr. In this case, one unit increase in systemic search friction leads to a large
amount of decrease in bond price (increase in yield spread).

As for whether transaction price increases or decreases with systemic search friction, this
depends on whether there exist a nontrivial amount of traders who search to sell (buy) the
bond, and also depends on how strong incentives the traders have to offload their bond
positions to others (buy the bond into their inventories). For example, a bond will have its
average transaction price (yield spread) decrease (increase) with systemic search friction, if
there are a nontrivial group of traders paying very high cost for holding the bond. These
traders will be more willing to accept a lower transaction price to offload the bond as soon
as possible, when it becomes more difficult to meet a counterparty with positive trading
surplus. It is the opposite situation for a bond with low holding costs for all traders. In this
case, the bond’s average transaction price (yield spread) may increase (decrease) with search
friction, because the bond is popular to all traders, due to its low holding cost. When it is
more difficult to locate the bond, buying-traders are more willing to offer a higher transaction
price to buy the bond.

Finally, we estimate each bond’s misallocation among traders!® based on an extended
setting of the model, and show its significant correlation with bond’s heterogeneous liquidity

risk from search friction in the cross section. Within each bond-and-month, for all traders

10Tn data, the traders are identified as FINRA’s member firms. Because we can observe each member firm’s
virtual ID, we can track each firm’s cumulative buying and selling amounts over time, and thus estimating
their holding positions on each bond and at each time. Therefore within each period, we can characterize
how a bond’s positions are allocated among all the firms.



who trade this bond, we separately estimate these traders’ two idiosyncratic states, namely
the traders’ private valuation for holding the bond and their inventory position on the bond.
For private valuation, we propose an estimate based on traders’ completed transactions. It
is calculated as the average of each trader’s maximum (orthogonalized) buying price and
minimum (orthogonalized) selling price, and both prices are orthogonalized against changes
in bond’s fundamental value; for inventory position, we follow the approach in Hansch,
Naik, and Viswanathan (1998) to estimate traders’ standardized inventory position using
their consecutive buying and selling amounts. Then within each bond, we calculate the
misallocation as a cross-trader covariance of the above two estimated series. We construct
a panel data which contains all bonds’ yearly series of estimated misallocation and liquidity
risk from search friction. We verify the model prediction that across all bonds, a higher level
of misallocation is associated with a lower absolute value of liquidity risk from search friction,
for both negative- and positive-liquidity-risk bonds. This finding also supports that, in a
decentralized financial market, the joint distribution of market participants’ idiosyncratic
states is correlated with the intensity at which market-wide search friction drives the asset
price. We also empirically verify another two model predictions, which help us understand
the channel through which bond misallocation cross-sectionally determines liquidity risk from

search friction.

1.1 Related literature

This paper contributes to the empirical literature initiated by Collin-Dufresn, Goldstein,
and Martin (2001) that uncovers fundamental factors to explain U.S. corporate bonds’ yield
spread variations over time. In this literature, Collin-Dufresn, Goldstein, and Martin (2001)
establish that there is an unexplained single common factor in corporate bonds’ yield spreads
after controlling for commonly used explanatory variables; Longstaff, Mithal, and Neis (2005)
measure the size of the default and non-default components in corporate yield spreads, and
show that the non-default component is related to bond-specific as well as macroeconomic
measures of liquidity. Later papers add in other common risk factors to improve the ex-
planation, see Bao, Pan, and Wang (2011), Crotty (2013), Friewald and Nagler (2019), He,
Khorrami, and Song (2019), and etc. In particular, Friewald and Nagler (2019) attribute the

unexplained part of the non-default component to over-the-counter (OTC) market frictions.



Some papers target on explaining bond returns instead of change in yield spread, including
De Jong and Driessen (2012), Friewald and Nagler (2016), Bongaerts, De Jong, and Driessen
(2017), Bai, Bali, and Wen (2019), Bali, Subrahmanyam, and Wen (2021), Goldberg and
Nozawa (2021), and etc. Our paper is more related to Goldberg and Nozawa (2021), who
analyzes how dealers’ liquidity supply through inventory positions drives bonds’ expected
return. Our paper differs in that, we focus on the distribution of inventory positions among
different traders, which determines the cross-sectional heterogeneity in bonds’ yield spread
loading on the common systemic search friction.

This paper is also related to a series of papers which focus on the relationship between
pricing of fixed income securities and liquidity provision in over-the-counter market. Among
these papers, Bessembinder, Spatt, and Venkataraman (2019) gives a complete review on the
decentralized microstructure of fixed income securities; some papers study the effect of inter-
mediation and trading relationship on asset price, including Di Maggio, Kerman, and Song
(2017), Goldstein and Hotchkiss (2018), Bessembinder, Jacobsen, Maxwell, and Venkatara-
man (2018); some papers focus on the effect of market fundamentals, e.g. search friction
and trading venues (voice-based or electronic), including Feldhiitter (2012) and Hendershott
and Madhavan (2015). The model estimated in this paper also relates to a multi-factor and
liquidity-based asset pricing framework, which includes works by Fama and French (1993),
Carhart (1997), Pastor and Stambaugh (2003), and Acharya and Pedersen (2005).

The theoretical part of this paper is related to a literature initiated by Duffie, Garleanu,
and Pedersen (2005) who use a search-and-match model to study asset price and liquidity in
OTC markets. Our model maintains the assumption on a random search environment, which
is similar to one strand of the literature including Duffie, Garleanu, and Pedersen (2007),
Vayanos and Wang (2007), Vayanos and Weill (2008), Weill (2008), Praz (2014), Afonso and
Lagos (2015), Atkeson, Eisfeldt, and Weill (2015), Trejos and Wright (2016), and Hugonnier,
Lester, and Weill (2020), etc. For the purpose of our analysis, our model only contains one
short period, during which each trader either trade or not trade. It is also essential that
we allow traders to adjust their idiosyncratic searching activity based on their idiosyncratic
states and market fundamentals. This setting is similar to another strand of the literature,
including Shen, Wei, and Yan (2018), Neklyudov (2012), Milbradt (2016), Farboodi, Jarosch,
and Shimer (2017) and Uslii (2019). Most papers in the theoretical literature focus on how

searching activity determines the transaction volume and price within every pair of two



counterparties. This paper instead focuses on how search friction drives asset’s average
transaction price across all traders.

The rest of the paper is organized as follows: section 2 estimates bond-level liquidity
risk from search friction, and characterizes the cross-sectional heterogeneity in this type of
liquidity risk among all bonds. Section 3 proposes a measure of bond misallocation among
traders based on a simple search-and-match model, then verifies how bond misallocation
cross-sectionally explains liquidity risk from search friction. In particular, section 3.1 builds
and solves the search-and-match model; section 3.2 estimates bond-level misallocation in the
data; section 3.3 validates the relationship between misallocation and liquidity risk; section
3.4 further validates another two model predictions, which helps us understand the channel

through which bond misallocation determines liquidity risk. Section 4 concludes.

2 Liquidity risk from search friction

We estimate bond-level liquidity risk from search friction by fitting a multi-factor model
for bond yield spread, similar to Friewald and Nagler (2019). We use the volume-weighted

! and we

average length of intermediation chain as a measure of systemic search friction?
regard bond’s yield spread!? loading on the average chain length as bond’s liquidity risk from
search friction. We will show that, in cross section of bonds, the value of this liquidity risk

varies across bonds.

Data We use an enhanced version of U.S. Corporate Bond TRACE Data which includes
all realized corporate bond transactions and is provided by the Financial Industry Regu-

latory Authority (FINRA). In this data, transactions happen either between a FINRA’s

1

member firm!'® and an outside non-member firm, or between two FINRA’s member firms.

' The weighted average length is also the average number of traders participating in the intermediation
process. Details about how the intermediation chains are constructed in data are discussed in Appendix B.

12Yield spread is defined as the difference between corporate bond yield and the treasury yield whose term
equals the corporate bond duration. Similar to Crotty (2013), Friewald and Nagler (2019), etc, we calculate
treasury yields of different terms through linearly interpolating between points on the treasury curve.

IBFINRA’s member firms are mostly broker-dealers, exchanges and crowd-funding portals, which are
regulated by FINRA. Member firms are required to submit reports to FINRA after they complete transactions
on corporate bonds. The reports include detailed information on realized transactions, including bond ID,
counterparty ID, price, volume, execution time, etc, and each report must be submitted within 15 minutes
since the corresponding transaction happens.



One advantage of the dataset is, we can observe the virtual IDs!* of FINRA’s member firms
in all completed transactions. Therefore in data, we identify all FINRA’s member firms as
“traders”. This data allows us to track, for each volume of bond sold from a non-member
firm to a member firm, how this volume of bond is transacted between traders (i.e. member
firms) before finally sold to another non-member firm. Therefore, we are able to identify
intermediation chains for each bond. It also allows us to characterize how a bond’s positions
are allocated among all traders. Then we are able to build the measure of bond misalloca-
tion, which is an important cross-sectional determinant of bond’s liquidity risk from search
friction.

We filtered the data following a similar procedure in Dick-Nielsen (2014), and additionally
we recover the real trading counterparties in some specific types of transactions.'®> We merge
the filtered data with the Mergent Fixed Income Securities Database (FISD) and Wharton
Research Data Services (WRDS) Bonds Return Database to incorporate bond fundamental
characteristics and credit ratings. Following the academic literature using the same dataset,
we further exclude some specific types of bonds and transactions: (i) we exclude bonds with
option-like characteristics, including variable coupon, convertiable, exchangable, puttable,
etc, and also asset-backed securities and private placed instruments; (ii) to estimate bonds’
yield spread loading on search friction, we exclude inactively traded bonds, which were
traded in fewer than 25 months throught the whole sample period; (iii) we exclude all the
transactions which occurred within three months after bonds’ offering dates, to only consider
off-the-run bond transactions.

We construct a monthly panel dataset containing both trader-level and bond-level vari-
ables'®. The final sample ranges from Jan 2005 to Sep 2015, and contains 10760 bonds
traded by 3050 traders. The total outstanding amount of all the bonds is $5.37 trillion. The
average bond rating is BBB by the S&P rating categories. Among these bonds, 84% are

4The virtual IDs are assigned by FINRA to its member firms. Non-member firms are not assigned with
such virtual IDs, so that they can not be identified in the data.

15For details of recovering real trading counterparties, see Appendix ??.

16The raw data is high-frequency which records the time of each transaction accurately to the second. In
the literature also using TRACE data, it is a common practice to process the data to monthly frequency
because corporate bond market is relatively illiquid compared with stock markets, see Bao, Pan, and Wang
(2011), Crotty (2013), Friewald and Nagler (2016), and Friewald and Nagler (2019), etc. In particular, An
(2019) documents that dealers’ (which are “traders” in our paper) average inventory duration in the U.S.
corporate bond market is around three weeks by using the same dataset, which implies that the average
frequency at which dealers adjust their inventories is around one month.



investment grade and the remaining ones are high-yield or non-rated.!” Bonds on average
have a time-to-maturity of 7.6 years. There are in all 58 million transactions with total par
amount as $27.8 trillion. The average trade size is $482.4 (1,000) with a standard deviation

as $4.5 (1,000). For a more complete summary statistics of our sample, see Table 7.

2.1 Measure search friction

We use length of intermediation chain as a measure of search friction in corporate bond
markets, following relevant papers on empirical characterization and theory of intermedia-
tion chains. Intermediation chains were firstly constructed in Li and Schiirhoff (2014) and
Hollifield, Neklyudov, and Spatt (2017) to track how municipal bonds and securitization
instruments are reallocated from a customer-seller to a customer-buyer through a group of
dealers. The length of an intermediation chain is defined as the number of dealers, through
which the asset changed hands during the reallocation process. By Hugonnier, Lester, and
Weill (2020), the expected length of intermediation chain decreases with the market-wide
search friction. Specifically, in a more frictional market, it is more difficult for dealers to
reallocate asset with each other, so that there will be fewer dealers participating in each re-
allocation of the asset between customers. Then the average length of intermediation chain
will be shorter.!®

In this paper, intermediation chains are constructed and interpreted in a similar way,
except now the “customer-seller” and “customer-buyer” are the outside non-member firms,
and “dealers on intermediation chain” are now FINRA’s member firms, i.e., the “traders”

we defined above.!?

"By the S&P rating categories, investment grade are S&P BBB or higher; and high-yield(junk) are below
or equal to S&P BBB-.

8Note that length of intermediation chain is only related to number of dealers participating in each
reallocation process, but not related to the physical time elapsed between when a customer sells to a dealer
and when another customer buys the same volume of bond from a same/different dealer. As market-wide
search friction increases, although intermediation chains will on average be shorter, it does not necessarily
mean the reallocations of assets between customers also take shorter time.

19The reason we do not use the names of “dealers” and “customers” as in other relevant papers is, we
emphasize the role of the allcation of bond positions among market participants in determining the intensity,
at which systemic search friction drives bond price. Therefore, we only focus on the market participants whose
bond positions can be identified and treat them equally as “traders” in our model. This helps simplify the
model and more clearly show the channel through which allocation of bond positions (i.e. bond misallocation)
works, without generating unnessary confusion by differentiating between dealers and customers.

10



To measure the systemic search friction at monthly frequency, we calculate the average
length of intermediation chains across all bonds for each month, using volumes of realloca-

20 To be consistent with the model assumption in Hugonnier, Lester, and

tion as weights
Weill (2020) that traders on an intermediation chain truely commit their capital by taking
bond positions in their inventories, we only use principal trades to construct intermedia-
tion chains, by excluding pre-arranged transactions?!. Figure 1 shows the moving average

2 The chain length is relatively

(MA) of the cross-bond average chain length over time.?
higher before the great financial crisis, which implies lower systemic search friction in all
corporate bond markets. Then it decreases during the crisis period®® when secondary bond
market liquidity significantly deteriorates. Although the average chain length recovers in
the post-crisis period, after Dodd-Frank act was signed into law in July, 2010, it further
decreases by nearly 8% till the third quarter of 2015. This is consistent with the effects of
Dodd-Frank act on restricting broker-dealers’ market-making through restricting proprietary
trading practices.?*

To further verify that the average chain length is negatively correlated with the level of
search friction: (i) we plot the proportion of pre-arranged transactions among all transactions
in each month. This ratio tends to be higher when market is more frictional so that traders
are less willing to commit their capital to liquidity provision?, but more willing to pre-

arrange trades between buyers and sellers. In Figure 1, the ratio of pre-arranged trades is

20Tn our data, transactions happen at the trader level, instead of the firm level, which means one firm may
have several trading desks located in different subsidiaries. However, since we are only able to observe traders’
virtual IDs assigned by FINRA, we cannot identify those transactions that happened between subsidiaries
of the same firm. If the proportion of such “within-parent-firm” transaction is high enough, this may make
the average length of intermediation chains overvalued.

21The way by which we identify pre-arranged transactions in data is shown in Appendix A.

22For the evolutions of different compositions of the cross-bond average chain length, including volume of
reallocation on each chain, different quantiles of chain length across bonds, etc, see Figure 10 and Figure 11.

23Gimilar to Bessembinder, Jacobsen, Maxwell, and Venkataraman (2018), we divide the whole sample
period into five subperiods: Pre-crisis (Jan 2006-Jun 2007), Crisis (Jul 2007-Apr 2009), Post-crisis (May
2009-Jun 2010), Regulation (Jul 2010-Mar 2014), Volcker (post April 1, 2014).

24This decrease in chain length was not caused by the growth in electronic trading in corporate bond
market. O’Hara and Zhou (2021) shows that by 2017, only around 13% of notional amounts or 25% of
trades happen via a main electronic venue, MarketAxess. And this platform accounts for 85% of market share
among all electronic trading platforms for U.S. corporate bonds by Greenwich Associates 2018 Corporate
Bond Trading report. Therefore, the number of proportion in notional amounts in 2015Q3 is expected to be
lower than 13%, which has little effect on the calculated volume-weighted length of intermediation chain.

25See Bessembinder, Jacobsen, Maxwell, and Venkataraman (2018).
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Figure 1. Evolution of Search Friction (Jan 2005 - Sep 2015)
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negatively correlated with the average length of intermediation chain. (ii) for each length
of identified intermediation chains in data, we calculate the average length of time it takes
for each transaction on a chain to happen. See Figure 8. The average length of time for
each transaction to happen is negatively correlated with the length of intermediation chain.
This also verifies that intermediation chain length is negatively correlated with intensity of

trading difficulty, i.e. search friction.

2.2 Bond liquidity risk from search friction

We estimate bond-specific yield-spread loading on systemic search friction, denoted as Bgys Search
using monthly panel data, and we use this factor loading to measure bond-specific liquidity
risk from search friction. We calculate yield spread as the gap between bond yield and the

same-maturity treasury yield which is obtained by interpolating yield curve. Then we esti-
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mate the target factor loading Bgys Searen, 1D @ multi-factor model with controls on other OTC
market frictions (Friewald and Nagler (2019)), market risk factors (e.g. equity pricing fac-
tors, market volatility, etc, in Fama and French (1993), Carhart (1997), Crotty (2013)), and
bond-specific fundamentals. The factor loading ﬁgys Searen, Measures how sensitively the non-
default component of yield spread of bond j responds to change in systemic search friction.
Systemic search friction is measured by the volume-weighted average length of intermedia-
tion chains across all bonds, and its monthly change is denoted as ASystemChainLength,.?®

The model is as follows:

A(YieldSpread);, = ﬁéysSeamhASystemC’hamLengtht + ﬁéysNetComenASysNetConcent
(1)

+6%/[KTRMKT¢ + BéMBRSMB,t + 5}‘{MLRHML¢ + ﬁ{]MDRUMD,t
+7{A]t + W%ABt + 'Y?);AXt(j) + €5t

and our main focus is to discuss how market-structure factors cross-sectionally determine
the value of ﬁg‘ysSearCh'

The other controls in the multi-factor model are as follows: (i) change in trader-network
concentration ASysNetConcen;, which is the summation of all traders’ average degree cen-
tralities®” in month ¢; (ii) returns on factor-portfolios Ryrre, Rsmpt, Rumr: and Rump.,
namely market portfolio (S&P 500 portfolio), small-minus-big(SMB) portfolio, high-minus-
low(HML) portfolio and up-minus-down(UMD) momentum-factor portfolio; (iii) change in
inventory-related frictions Al = (Ainv,_1; Aamtout,; Aprearrange;), in which Ainvy_ is
the one-month-lagged change in all traders’ inventories in all bonds, Aamtout; is the change
in all bonds’ total outstanding amount, Aprearrange; is the change in pre-arranged ratio of

all transactions; (iv) change in bargaining frictions AB; = (Ablocktradey;

26We use the average chain length across all bonds to make the level of search friction same to all the
bonds. Because our focus is to characterize and explain the cross-sectional heterogeneity in bond’s yield-
spread loading on the common search friction, we use the cross-bond average chain length to avoid the case
that bond’s liquidity risk from search friction is correlated with current level of search friction.

2"Degree centrality is another measure of vertices’ centralities in a network. Unlike eigenvector centrality,
degree centrality only takes into account all direct links directed from or to each vertice. For a network with
n vertices, the theoretical maximum value of the summation of all vertices’ degree centralities is n(n — 1).
Therefore, the summation of all traders’ degree centralities in the trader-network is a better measure of the
concentration of the network. The closer the summation is to n(n — 1), where n is the number of traders,
the less concentrated the trader-network is.
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AHH Itrader,), in which Ablocktrade, is the change in the proportion of block trades, and
/\H H Itrader; is the change in the average value of all bonds” HHI indices®®; (e) all the other
bond-level and market-level controls AX; = (A(YieldSpread);, 1, ARF;; (ARF,)*; ASLOPE;;
Aturnoverl; Rating!; TTM?), in which A(YieldSpread);;—; is the lag term of change in
yield spread, ARF; ((ARF})?) is the (squared) change in 10-year treasury rate, ASLOPFE;
is the change in slope of yield curve, Aturnoverf is the change in bond j’s current-month
turnover rate, Ratmgg is bond j’s credit rating in month ¢ and T’ TMtj is bond j’s time to
maturity in month t.

The average value of 5§ysSearch across all bonds is significantly negative, as shown in
Table 1. This is consistent with results in Friewald and Nagler (2019) who only reports
the cross-bond average value of Béys searen- Lhis implies that, on average across all bonds, a
one standard deviation increase in intermediation chain length (decrease in systemic search
friction) is associated with at least 8.57 bps decrease in yield spread.? For full regression

results, see Table 18 in Internet Appendix.

2.2.1 Cross-sectional heterogeneity in liquidity risk from search friction

However, the value of Bg’ysSearch significantly varies across bonds. To better characterize the
full distribution of BJSysSearch and its potential cross-sectional determinants, we separately
estimate group- and bond-level B,]S'ys Searen, USING our sample data.

For group-level ﬂgysSearch’ bonds are classified into different groups based on contract
terms and issuer characteristics®. The estimation result shows that for most groups, group-
level Bgys Search, 18 Negative but with different absolute values. A group with a higher absolute

value of ﬁgysSearch will have its bonds’ price change more sensitively with systemic search

28Block trades are defined as trades with volume larger than $1,000,000. Each bond’s HHI index is
calculated by using all traders’ market shares in that bond. Both variables are proxy for systemic bargaining
frictions in the U.S. corporate bond market: the higher the ratio of block trades is, the more bargaining
power the outside non-member firms have, and the higher the average value of all bonds” HHI indices is, the
more concentrated are bonds’ transactions to a subset of traders, therefore, the lower bargaining power the
outside non-member firms have.

29We use the estimate of coefficient of ASystemChainLength; in specification (3) of Table 1, which
controls all OTC market frictions and bond-specific characteristics. This specification generates the average
bond-specific liquidity risk with the lowest absolute value. In the distribution of intermediation chain length,
95% of observations fall within around four standard deviations of the mean.

30For contract terms, we consider time-to-maturity, outstanding amount, credit rating; for issuer charac-
teristics, we consider issuers’ leverage ratio, book-to-market ratio, profitability(ROA), and industry sector.
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Table 1. Average of bond-specific liquidity risk

Dependent variable:
A(YieldSpread);, (%)
(1) (2) (3)

ASystemChainLengthy -2.32%F* -1.67%F* -1.55%%*
(-32.80) (-21.38) (-21.38)
ASysNetConcen; (thousand) -9.83e-03%+* -4.77e-03%4* -4.43e-03%H*
(-48.16) (-22.30) (-20.10)
Mean Adjusted R? 0.18 0.35 0.37
# of Bonds 11,176 11,176 9,595
Observations 515,514 515,514 479,146
inventory and bargaining frictions YES YES YES
market aggregates and FFC 4 factors NO YES YES
bond liquidity and fundamentals NO NO YES

Note: * p < 0.1, ** p < 0.05, *** p < 0.01. t-statistics are in brackets. We exclude bonds with
total number of observations smaller or equal to 19 for column (1)-(2) and smaller or equal to 25
for column (3). The reported estimated coefficients are average values taken across all bonds. The
corresponding t-statistics are calculated by dividing each reported (average) coefficient value by the
standard deviation of the estimates and scaling by the square root of the number of bonds. Details
are in section TA.2 of Internet Appendix.

friction. Also, group-level 5éyssearch significantly but non-linearly depends on most of the
contract terms and issuer characteristics. This motivates us to find a cross-sectional de-
terminant of BgysSearch which is potentially related to market structure and distribution of
traders’ characteristics, and determines bonds’ liquidity risk from search friction in a more
linear way. The cross section of group-level 6§yssearch are shown in Figure 5 and Figure 6.
For related regression results, see Table 13, Table 14, and Table 15 in Internet Appendix.
The estimation result of bond-specific Béys Search, iPlies that, individual bonds have their
yield spreads respond, either negatively or positively, to increase in systemic search friction.
There exist quite a portion of bonds having their prices increase when search friction increases
(i.e., positive BgysSmmh). Similar to group-level estimates, the absolute value of bond-specific

Bsyssearen also significantly varies across bonds. The cross section of bond-specific S5, searen
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are shown in Figure 7.

2.2.2 Liquidity risk and yield spread level

In this section, we show that it is important to characterize and explain the cross-sectional
heterogeneity in corporate bond’s liquidity risk from search friction, because this type of
liquidity risk is significantly compensated by yield spread and thus helping explain the cross-
section of yield spread levels.

We run Fama-MacBeth regression for different subperiods. Specifically, we follow Bessem-
binder, Jacobsen, Maxwell, and Venkataraman (2018) to divide the whole sample period into
five subperiods: Pre-crisis (Jan 2006-Jun 2007), Crisis (Jul 2007-Apr 2009), Post-crisis (May
2009-Jun 2010), Regulation (Jul 2010-Mar 2014), Volcker (post April 1, 2014). Within each
subperiod, we firstly estimate bond-specific liquidity risk Bg;s Searehs S = 1,2,3,4,5 in model
(1). Then in the second step, we run cross-sectional regression of level of yield spread on
estimated factor loadings from the first step and other determinants, separately for each

subperiod s:

. _\s J s J
Yzeldsprea'dj,s - )\SysSearch * ﬁSysSea’rch,s + )\SysNetConcen * BSysNetConcen,s (2)

s J s J
+)\prearTange * Vl,prearrange,s + )‘inv * vl,inv,s
s j s j BE j
+>\block‘t7‘ade * 72,blocktrade,s + AHHItrader * 72,HHItrader,s + BFS + UE + €s

_ J J J J J J
where s = 15 27 3? 47 5. {BSysSearch,m BSysNetConcen,S’ P)/l,prearrange,w 71,inv,s7 72,blocktrade,s7 72,HHItrader,s}
are the collection of estimated factor loadings from the first step, which measures bonds’

liquidity risk from search friction and other bond-specific yield-spread loadings on trader-
network concentration, ratio of pre-arranged trades, traders’ aggregate inventory, ratio of
block trades, and the competition level of trader market. BF", is a collection of bond-level

determinants of spreads, including bond liquidity measured by Amihud?®', trade concentra-

3 Amihud! is a liquidity measure proposed by Amihud (2002), which is calculated as the average absolute
value of daily return divided by daily par dollar volume. Specifically, Amihud{ = ﬁ ij:’tl #ﬂiﬂ
d;+ is the number of days with observed returns in month t for bond j, 7; is the return for bond j on
day 7, and Volume; is the par dollar volume traded on day 7. Within each subperiod s, we calculate

volume-weighted average Amihud?, using monthly trading volume as weights.

, where
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tion (among traders), credit rating, bond-specific search friction®? and number of trades in
segmented markets.??

We are specifically interested in g, geqrens § = 1,2, 3,4,5, which characterizes the cross-
sectional relationship between bond liquidity risk from search friction and yield spread. We
show in Table 2 that the estimate of A§, .seure, 18 uniformly negative across subperiods.
This implies that, for a bond with negative liquidity risk (8, ,gcqrens < 0 ), the bond’s yield
increases with search friction, and the more sensitively the bond’s yield increases with search
friction, its average yield will be higher to compensate holders for the higher liquidity risk;
for a bond with positive liquidity risk (6éysSearch,s > 0 ), the bond’s yield decreases with
search friction, and the more sensitively the bond’s yield decreases with search friction, its
average yield will be lower because holders need to pay for the heding function of the bond.
By Table 2, on average across all subperiods, a one standard deviation (13.7) increase in the
absolute value of ﬁg’ysSearch,s (for 5§y356amh75 < 0) is associated with a 8.4 bps higher yield
spread. This compensation for liquidity risk from search friction is highest in the Post-crisis
period when it is equal to 34 bps, and the second highest is equal to 24 bps, which happens
in the Crisis period.** For full regression results, see Table 8.

Our next step is to construct a new bond-level measure, bond misallocation among
traders, and use it as a cross-sectional determinant of the absolute value of bond’s liquidity

risk from search friction, after controlling bonds’ contract terms and issuer characteristics.

3 Cross-sectional determinants of liquidity risk from

search friction

In this section, we build a simple search-and-match model with traders trading a single

bond, and based on the model, in Section 3.1.3, we formally construct the measure of bond

32Bond-specific search friction is measured by the average length of time interval between consecutive
trades on each intermediation chain, excluding the head and tail trades. The reason we exclude the head
and tail segments of intermediation chains is that these trades are more likely to be pre-arranged or more
likely imply directed search of outside non-member firms instead of the random search of traders we focus
on.

33We consider two segmented markets, one including transactions only between FINRA’s member firms,
the other including transactions between FINRA’s member firms and outside non-member firms.

34Note that the increase in yield spread level depends on both the value of ASysSearen and standard
deviation of liquidity risk in each subperiod.
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Table 2. Fama-Macbeth regression of yield spread level on factor loadings

Subperiod Pre-crisis crisis — post-crisis  requlation  Volcker
(s=1) (s =2) (s =3) (s =4) (s =15)

Standard deviation of BL  geaens 714 27.02 9.19 6.41 23.70

A$ysSeareh (DPS) Sl21FF Q.89 3 6hMR 1 13K _(.89% K

(-3.43)  (-5.70)  (-10.46)  (-6.00)  (-5.18)

Adjusted R? 0.48 0.51 0.62 0.45 0.42
# of Observations 2371 2468 2517 7078 2958

Note: * p < 0.1, ** p < 0.05, *** p < 0.01. t-statistics are in brackets.

misallocation among traders. Excluding heterogeneity in bond-specific characteristics, this
model predicts that, a bond with more (less) positions being misallocated among traders has
a lower (higher) absolute value of yield spread loading on systemic search friction. The key
model component which leads to this prediction is traders’ choosing their search intensity.?
More misallocated bond positions motivate traders to invest in higher search intensity to
reallocate the bond among themselves. Then for both the traders who wish to offload their
holding positions and the traders who wish to fill their balance sheet space, they can more
quickly complete the transaction without making their accepted price change too much.
Therefore, in a market with a higher level of bond misallocation, bond price is more rigid
to change in systemic search friction. In other words, the absolute value of bond’s liquidity

risk from search friction is relatively low.

35Game as the literature of search-and-match model for over-the-counter markets, a trader’s search in-
tensity (or efforts spent on searching activity) determines the likelihood that she is matched with another
counterparty to bargain and trade with, during the random search process.
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3.1 A simplified model
3.1.1 Setting

We consider a simplified one-period search-and-match model with a continuum of traders
trading an indivisible bond of one-period maturity. The length of period is denoted as A,
and we assume in value 0 < /A << 1. The bond only pays a dividend d > 0 at maturity. The
measure of all traders is normalized to one, and each trader’s bond position a is assumed
to be either zero or one.®® Besides bond positions, the traders are also characterized by
an private valuation & which is either low or high, and denoted by 6 € {¢,h}. We assume
the private valuation follows a discrete uniform distribution among the traders with PDF
P(§ = 6) = Ps = 1, 6 € {¢,h}. Following the interpretation of private valuation in the
Introduction session, we assume that, by holding the bond at maturity (t = A), a low-type
trader needs to additionally pay a holding cost C' > 0 which satisfies d — C' < 0, and a
high-type trader does not need to pay such cost.?”

The economy has two time points, ¢ = 0, A. Figure 2 describes the timeline. At ¢t = 0,
a fraction 0 < s < 1 of traders each initially hold one unit of the bond, and we also call
them “bond holders”. Among these bond holders, a measure ¢7, of the bond holders have
a low-type private valuation, and the remaining ¢7, = s — ¢7, of the bond holders have a
high-type private valuation. There is no asymmetric information in the economy. All traders
are risk neutral, and they discount payment flows at rate r. They each choose a costly search
intensity based on their own private valuations, bond positions and their expectations on
the distribution of demographics in the market. During the single period, traders randomly
search and trade with each other in the market. Intuitively, the most essential motivation for
traders to trade is: the low-type traders who hold the bond want to offload their positions
to high-type traders who do not hold the bond. A trader with a higher search intensity is
able to more quickly meet another trader in the market, so that there is a higher probability

that the trader completes a transaction within the short period A.

36We borrow the {0, 1} assumption for bond holding from Duffie, Garleanu, and Pedersen (2005). This as-
sumption, together with the indivisibility of the bond, determines that the trading volume in each transaction
equals one unit, and traders cannot short-sell the bond.

3TThis setting follows Duffie, Garleanu, and Pedersen (2005). The holding cost can be interpreted as
from traders’ need for cash, high financing costs and hedging needs to sell, etc. In this paper, we specifically
consider high-enough holding cost, which motivates low-type traders who hold the bond to “compete” selling
the bond to high-type traders, otherwise, the low-type holders will obtain a negative cash flow at maturity.

19



Figure 2. Timeline of the Economy

t=0 t=A
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We assume the following specification of matching function: the intensity at which a
trader with search intensity A contacts and is contacted by another trader with search in-
tensity N equals m(A, \') = 2AN. More formally, the length of time before a trader meets
a counterparty with positive trading surplus follows an exponential distribution. The expo-
nential parameter is jointly determined by the trader’s search intensity, the counterparty’s
search intensity, the counterparty’s population size, and market fundamentals. Details are
in trader’s problem (3). Bond positions are sold from low-type bond holders to matched
high-type non-holders at an equilibrium price P. 3 At ¢t = A, payments for transactions,
search costs and holding costs of low-type bond holders are settled, and dividends are also
paid to all bond holders.

Trader’s problem We consider each trader’s maximizing her discounted net payment
flow at t = 0, by choosing search intensity A at a quadratic form of flow cost® kA%, K > 0.
Denote trader’s discounted net payment flow as U,(d), with a € {0,1} and ¢ € {¢, h}, which

38In our model with two discrete private valuations, there only exists positive trading surplus between a
low-type bond holder and a high-type non-holder. We also assume that each trader at most trades for one
time during the short period A\, in other words, each trader either trades once or does not trade within the
short period. For simplicity, in later analysis, we focus on how search cost drives the unique transaction
price P between low-type and high-type traders. This price can be interpreted as the average of multiple
transaction prices which happened simultaneously between different pairs of trading counterparties in over-
the-counter corporate bond markets.

39The total search cost paid by each trader at t = A equals the flow cost kA2 multiplied by the length of
the period A.
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satisfies:

Ua(3) = max e x § [1 = e e @Ra®8] (10 = 1) x P 3)

N

Prob. transa\crtion happens
+1(a=0) x (d—1(6 =()C — P)]
+ e PN 0NA 5 (g = 1) x (d— 1(6 = £)C)

Prob. transaction not happen

—kA(6)°A
N —’

search cost

where 6,0 € {{,h}, § # ¢, and the optimal solution of search intensity A,(d) depends on
current trader’s bond position and private valuation. Let A} __(d") denote the counterparty
group’s optimal search intensity and ¢$_,(0’) denote the counterparty group’s population
measure. On the right side, we assume the time at which a transaction happens for the
current trader (a, 5) which is denoted as 7(4,5), follows an exponential distribution with PDF
frias = Ma, 0)e M@)*Tws) and the rate parameter A(a, 8) = 2X,(8)A1_a(6")0_,(8")A. No
matter whether a transaction happens or not, at the end of the period, a trader choosing
non-zero search intensity always needs to pay a search cost which equals /-i)\a((S)QA. The
search cost is in a convex form of the chosen search intensity A,(d) and is proportional to
the length of the period A. Given the assumption that the period is short enough, we apply
the approximation rule, e* =~ 1 + x for x — 0, to solve trader’s problem. In particular, we

assume A is low enough such that 2A,(0)A1_,(8")¢9_, (')A < 1 in any equilibrium.

3.1.2 Model solutions

The search cost /@)\a(é)zﬁ can be interpreted as traders’ opportunity cost for entering and
actively trading in the market. Because traders will choose positive search intensities only
when the gains from searching is strictly positive, in trader’s problem (3), the equilibrium
price P must lie between low-type bond holder’s net payment flow d — C' < 0 and high-type
bond holder’s net payment flow d > 0. Therefore at initial time ¢ = 0, only low-type bond
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holders and high-type non-holders choose positive search intensities. To make it more “ur-
gent” for low-type bond holders to search and offload their positions, we additionally assume
the holding cost at maturity is high enough such that d — C = —d < 0.

Then we define the equilibrium in the model as follows:

Definition 3.1: Given initial distribution of traders {¢g(5)}ae{071}756{47h} and parameters
{s,k,d,C,r, A}, an equilibrium contains {Uy,(5), Ai(0), PYacqoay.sefeny, such that:

(1) {N5(0) Yacto1}.5eqe,ny solve traders’ problem (3), and A5(€) = Aj(h) = 0; (i4) market clears
att = A\, such that the total trading volume during the short period satisfies:

221 (O ()7 (O)¢5(h) A < min{T(¢), ¢5(h)} (4)

The market clear condition (4) trivally applies as both 2A7(€)A§(h) @S (€) A and 205 (€)A§(h)dg(h) A
are lower than one.

The low-type bond holders’ and high-type non-holders’ optimal search intensities, Aj(¢)
and Aj(h), are complementary to each other in the sense that a high (low) search intensity on
one side motivates the other side to also choose a high (low) search intensity. Therefore, if we
do not normalize the optimal search intensity or the maximized discounted net payment flow

of either low-type bond holders or high-type non-holders, in equilibrium only the relative

AL(0)
A5 (h)

Definition 3.1, the transaction price P of our main interest can be analytically solved out as

search intensities

can be uniquelly pinned down. However, in any equilibrium by

follows:

2d — C + \/(2d_5)2—4(d*(d_5>+w“253(’”)

pP— 5 (5)

where d — C' = —d < 0.

Intuitively when search friction s increases, the equilibrium transaction price P will
decrease, as low-type bond holders on average give up trading surplus (i.e. accept lower
sale price) to offload their bond positions to high-type non-holders as quickly as possible.
This happens because low-type bond holders find it more difficult to meet a counterparty
with positive trading surplus, and if no trade happens, they need to consume a negative

and also large amount of payment flow —d < 0 at t = A. In other words, low-type bond
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holders” marginal gains from per transaction decreases with search friction because of their

low outside option.

3.1.3 Bond misallocation

We further analyze how the derivative ‘é—]:, which is the theoretical counterpart of bond’s
liquidity risk from search friction Bgyssearch, depends on the initial distribution of trader
demographics {¢(6)}acto,1},5efe,n)- By expression (5), the higher the value of ¢¢(¢)¢§(h) is,
the less responsive the equilibrium price P is with respect to change in search friction k. We
interpret the lower of the initial measure of low-type bond holders and that of high-type non-
holders, min{¢$(¢), #3(h)}, as the bond positions which are misallocated among traders.
By model assumptions, we also have ¢§(h) = 2 — ¢9(h) = 1 — (s — ¢7(€)) = 5 — s + ¢5(0),
which requires ¢¢(¢) > s — %. Then under the restrictions ¢$(¢), ¢S(h) > 0, the level of

2
bond misallocation min{¢{(¢), ¢5(h)} is monotonically increasing with that of ¢9(€)@g(h).
By (5), this further implies that in our model, bond misallocation is the only determinant of
transaction price’s sensitivity to change in search friction, regardless of bond fundamentals.
With bond positions more misallocated among traders, bond’s average transaction price is
less sensitive to change in search friction.

To bring our model to data, we need a more computable measure of bond misallocation
which is strictly increasing or decreasing with both min{¢$(¢), ¢5(h)} and ¢9(£)¢é(h), and is
also normalized by the whole population size. We propose such a bond-level measure as the
covariance between traders’ holding position and their private valuation, in the cross section
of traders for each bond. Note that when calculating the covariance, we assign each trader’s
obtained net payment flow at maturity (i.e., dividend net of holding cost) to the value of the

trader’s private valuation, namely h = d and ¢ = d — C.*' Formally, bond misallocation is

40The concept of “misallocation” in this paper is related to the difference in allocations of bond positions
between over-the-counter and frictionless markets. In frictionless market, the equilibrium price is P = d
or P = d — C depending on whether the high-type or low-type traders are on the long side, i.e., whether
s < 1/2 or s > 1/2. When high-type traders are on the long side (i.e. s < 1/2), at any time, no low-type
traders will hold the bond, that is, ¢J(¢) = 0. In this case, min{#$(£), 3(h)} = ¢9(¢), so that any non-zero
positions held by low-type traders, ¢$(¢), will be regarded as misallocated; when low-type traders are on
the long side (i.e. s > 1/2), at any time, all high-type traders will hold the bond, that is, ¢3(h) = 0. In
this case, min{¢$(£), p3(h)} = ¢3(h), so that the positions whose total amount equals to the total balance
sheet space of high-type non-holders, ¢3(h), and which are also held by low-type traders, will be regarded
as misallocated.

41 The reason we do this is, across traders, the “dividend net of holding cost” is strictly monotonic with
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defined as follows:

Cov’(a,8) = (5 = 5(0)) (h =) = (5 = 65(0)) T = Cov"(65(), ) (6)

where ¢%(d), 0 € {¢, h} can also be interpreted as the expected inventory position of a J-type
trader. This is because we normalize the measure of all traders to be equal to one, which
makes the population measure coincide with the probability measure.

In summary, we have three monotonicity conditions: (i) the original measure of mis-
allocation min{¢$(¢), 3(h)} is monotonically increasing with ¢9(€)@g(h); (ii) ¢9(€)d§(h) is
monotonically increasing with ¢$(¢); and (iii) by (6), Cov°(a,d) is monotonically decreas-
ing with ¢9(¢). By conditions (i), (ii) and (iii), the original measure min{¢{(¢), #3(h)} is
monotonically decreasing with Cov®(a,d). Then we use Cov°(a,d) as a computable mea-
sure of bond misallocation. In Proposition 1, we analyze the relationship between bond
misallocation C'ov°(a,d) and liquidity risk from search friction ‘é—’;.

3.1.4 Relationship between bond misallocation and liquidity risk from search

friction

Proposition 1: Under parameter restrictions ¢3(€),¢3(h) > 0, d — C = —d < 0, ¢ >

W;"(h) and the normalization Uy ({) = 0, there exists a unique equilibrium by Definition 3.1
1 0

and satisfies: (i) %€ < 0 and Wd(f)|%| < 0; (i1) let Cov®(a, ) denote the covariance between

traders’ bond positions and private valuations at t = 0, since Cov°(a,0) x —1 x ¢(¢),

a€{0,1},0 € {¢,h}, we h(w_e m|%

holder’s holding cost as d < C' < 2d, and put additional restrictions such that d > 2r

V3 (0d5(h)’
s—i4y/(2—5)2 K2 . . ey .
K2 < =2 and 2t (22 e o @3(0) < 5,*2 then (i) there may exist multiple equilibria

when C takes different values:

| > 0. If we relax the restriction on low-type bond

traders’ private valuation. Moreover, it will be easier for us to characterize, under which conditions of d and
C, bond’s price will increase or decrease with search friction.

42These additional restrictions are sufficient conditions, intuitively, x? < 11—_65 restricts that search cost
cannot be too large, so that traders have incentive to invest in search intensity to meet and trade with each

_1 /(L _g)2 2
other; d > \/¢°(2él;¢°(h) and 22T (22 8)*+32n < P0) < % restrict that dividend d and the initial mis-
1 0
allocated positions ¢$(¢) need to be high enough relative to search cost, thus also generating high enough
trading needs for traders in the market to re-allocate mis-allocated positions among themselves.
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1. ifd<C <d+ WZS(’D" J two equilibria, one with % < 0 and the other with % > 0.

For both equilibria, m|%| > 0;
. K2 - i . . .7 . dP
2. 4f d + TRORR < C < 2d: there exists a unique equilibrium where - < 0 and
—4__|90) >
dCov°(a,d) ! dr ’
Proof of Proposition 1 is in Appendix C.1.1 and C.1.2.
The derivative % is the theoretical counterpart of bond’s liquidity risk from search
friction Bgyssearch. To formally map % to BsysSearch, We need the expressions of d}gDM

and dc;‘—;”” where YT'M is a bond’s yield-to-maturity and Chain is the average length of

intermediation chain for this bond. We use an approximated formula of YT'M to calculate

digDM YTM = Cﬁ where we choose time-to-maturity n = 8, face value F' = 1, and
coupon rate ¢ = 0. TQhen dZZ;M = —2(1i ek We calibrate the derivative of chain length with
respect to search friction as —0.0045, according to the derived formula and calibrated value
in Hugonnier, Lester, and Weill (2020).** Then we show the relationship between 42 and
BsysSearch:
dYTM  dYTM dP dr 1 dP 1
Jsvssiarch = 4Chain ~ dP * dr * dChain ~ 2(1+ P2~ s (—0.0045) "

Then a negative (positive) value of Sgyssearcn means that bond price decreases (increases)
when search friction increases. By Proposition 1, a higher misallocation (i.e. lower Cov°(a, d))

among traders makes the bond’s yield spread less sensitive to change in search friction:

ABsyssearch.
dCov°(a,d)

dﬁSysSearch

72Dy 0 if sSearc 07 d
dCov°(a,d) < 01 Bsyssearcn < 0; an

> 0 if 5SysSearch > 0. (8)

43In Hugonnier, Lester, and Weill (2020), the expected length of intermediation chain is derived to be equal
to (1 + %) log(1+ x), where x is an expression of latent parameters including market-level search intensity,
distribution of demographics, and the intensity that customers’ idiosyncratic private valuations change due
to liquidity shocks, etc. Then x is calibrated as solution of the equation (1 + i) log(1+x) = 1.16, where the

right-hand side value is the volume-weighted average length of intermediation chain from our sample. The
average length is taken both cross-sectionally and in time dimension. Therefore, we calibrate that y = 0.356.
We further assume that the level of search friction and that of average search intensity changes one to one,

by using other calibrated values in Hugonnier, Lester, and Weill (2020), we obtain that ‘;—’é = —% ~ —0.011,
where x denotes search friction, A\ denotes average search intensity. Finally, according to the formula of
dCéminZl _ X*loggler) % (70011) _

x  dr X

average length of intermediation chain, we obtain that dcjgi” =
—0.0045.
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Figure 3. Value of liquidity risk from search friction
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Note: Level of bond misallocation decreases with the value of covariance Cov°(a, d).

Graph-1: fixed holding cost C' = 2d and varying levels of search friction x; Graph-2: fixed level of search
friction x = & and varying holding costs C. For lower values of C, the model generates multiple equilibria,
i.e. one equilibrium with Bgyssearch < 0 and another one with Bgyssearcn > 0. Related parameters are:
d=10.6, K =0.05, s = 0.625.

which is equivalent to:
d|BSysSearch|
dCov°(a,d)

Proof is in Appendix C.1.3. A numerical example is shown in Figure 3.

> Oa for vﬁSysSearch' (9)

In Figure 3, the left graph shows that conditional on Bsyssearcn < 0, at each level of search
friction, the higher the level of initial misallocation is (i.e., the lower C'ov°(a, ¢) is), the lower
absolute value Bsyssearen has (i.e., bond yield is less sensitive to change in search friction at
each level of search friction); the right graph shows that when low-type bond holder’s holding
cost is low enough, there exist two equilibria, one has Bgyssearcn < 0 and the other has
Bsyssearch > 0. Conditional on the sign of Bgyssearchn, as the level of misallocation increases,
the absolute derivative of bond yield with respect to search friction always decreases. When
the holding cost is high enough, there exists a unique equilibrium with Sgysseqren < 0.

To test the key result #"(aﬁ)’%| > 0 in Proposition 3.1, we need to estimate the
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measure of bond misallocation Cov°(a,d) with expression in (6). Since within the short

period, the probability that a -type investor holds the bond is d)f/(g) and the probability of
not holding is 1 — ¢1(1)/(;§), then ¢9(§) is proportional to the d-type investor’s average inventory

within the period. Therefore in the data, for any bond-and-period, as long as we are able
to compute the estimates of each trader’s average inventory position gbAlo((S) and private
valuation 4 for that bond-and-period, we can calculate the sample covariance @O(gb(f@), 9)

and use it as an estimate of the bond’s misallocation among traders within that period.

3.2 Estimate of bond misallocation among traders

To estimate each bond’s misallocation among traders, we focus on each bond-and-month
and define each bond-and-month as a market. Within each market, we need to separately
estimate each trader’s private valuation for each bond and also her inventory position on
the bond. It is important to note that there exist non-trivial gaps between theoretical and
empirical moments: (i) private valuation is an assumed measure of traders’ relative preference
for a bond, which is used to rank the bond’s all traders by their relative preference from low
to high. It does not have a directly mapped moment in the data. (ii) it is also difficult
to directly estimate the absolute amount of each trader’s inventory position on each bond,
because in data we cannot observe traders’ initial bond position. In this section, we propose
an estimate of traders’ private valuation and we borrow an existing estimate of traders’
holding position. Both estimates are not exactly equal to but monotonically increasing with
their theoretical moments. Then we use these two estimates to estimate the covariance
between private valuation and inventory position.

In the data, within each bond-and-month (i.e., market), there are multiple traders trading
the bond. For example, there are on average 15 traders buying and/or selling a bond across
all bond-and-month, and the maximum value of this number is 256. We also calculate the
gap between maximum and minimum transaction prices within each bond-and-month, and
the mean and median of this gap are separately 487 bps and 422 bps across all bond-and-
month.** All above imply that within each market defined by a bond-and-month, traders
may have more than two types of private valuation. Therefore, our empirical estimates rely

on a setting with multiple types of traders.

44Tn the data, transaction price is reported as a percentage of bond face value.
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In the extended setting, traders’ private valuation belongs to a continous interval, § €
[0¢, 01,], and follows a uniform distribution. At ¢ = A, only the bond holder of the highest type
0y, does not pay holding cost, and the amount of holding cost paid by other-type bond holders
is monotonically decreasing with private valuation . For simplicity, we assume the holding
cost of a d-type trader who holds the bond at maturity equals ¢ x (6, — ), ¢ > 0, 0 € [dy, 0],
and the highest holding cost satisfies d — ¢ x (§, —d¢) = —d < 0. At ¢ = 0, bond positions are
distributed among the traders, following a continuous monotonic (increasing or decreasing)
function ¢$(8), & € [dy, 0x]. For a specific 6, ¢¢(0) can be interpreted either as the fraction of
5—type traders who hold the bond, or as the probability at which a 5—type investor hold the
bond,* i.e., the S-type investor’s average inventory position. Correspondingly, the fraction
of é-type traders who do not hold the bond can be denoted as: ¢2(d) = ﬁ —¢9(6). Similar
to the simplified setting, we use Cov(¢$(d),d — ¢ x (05, — 9)) ox Cov(p3(6), ), § € [d¢, 0n], as
a measure of bond misallocation.

In Figure 4, we give a numerical example which shows different levels of bond misal-
location in two over-the-counter (OTC) markets, relative to a counterfactual frictionless
market. The area below the function ¢¢(J), which is equal to (;ih ¢9(9)dd, represents the total

amount of bond positions being held by traders. Suppose in frictionless market, the mini-
(6n—0g)+d—cX(6p—0n) _
2

mum net payment flow among all bond holders is the middle level dex
2d—C><((5h—5(g)
2

traders with net payment flows lower than this middle level, as being misallocated. In the

, then in any OTC market, we regard any bond positions, which are held by

right graph of Figure 4, market-1 has relatively fewer positions being misallocated than
market-2. The difference in misallocated positions is the red area. Correspondingly, the

covariance Cov(¢9(d),d — ¢ x (8, — ¢)) is higher in market-1.

Estimate of private valuation We estimate monthly series of traders’ idiosyncratic pri-
vate valuations using realized transaction prices. The estimator we propose below is mono-
tonically increasing with private valuation across traders, within each bond in each month.
By search-and-match setting, the positive gains from searching requires that, for each trader
with private valuation § (i.e. with net payment flow d — ¢ x (&, — ¢)), all her selling (buy-

ing) prices are higher (lower) than d — ¢ x (5, — d), as long as her private valuation ¢ and

45Because we normalize the total population measure of all traders to be equal to one, the population
measure coincides with the probability measure.
46Mapped to data, each market can be regarded as a combination of bond-and-month.
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Figure 4. Example of bond misallocation relative to frictionless market (traders with multiple private
valuations)

frictionless market over-the-counter market

1/6,-0) ¢

AR ——market-1
——market-2

initial distribution of bond positions ¢{(J)

0

g, (0+3,)/2 X b (6+5,)/2 3,

The distributions of bond positions are set such that the measure of bond misallocation Cov(¢$(6),d — ¢ x
(6 — 9)) takes values as follows: in frictionless market, it equals 0.130, in market-1, it equals 0.13, and in
market-2; it equals 0.09. The pdf of private valuation is f(0) = ﬁ, Vo € [d¢, 0n). Related parameters are
50=0,0,=1,d=16,c=1.

bond’s fundamentals remain fixed in the period. Then the trader’s maximum buying price
(minimum selling price) is closest to her net payment flow?” in her buying (selling) direction.
Therefore, a simple average of the two can be used to consistently estimate the trader’s net
payment flow. Within each bond, across all traders, their net payment flow is monotonically
increasing with their idiosyncratic private valuation.

For each pair of bond-and-month, the estimate of traders’ private valuation is computed
as follows: . .

N max{Buyz’ng:tB} + min{S 6”3,71{;5}

6’i,t = 2 (10)

where {Eu\yznyf} ({@anf}) is the collection of all orthogonalized buying (selling) prices
by trader ¢ for bond j in month ¢, and nff (nff ) is the correspondinng number of total

4TFor simplicity, we ignore the discounting process of future net payment flow(s). The “net payment flow”
here refers to the summation of a trader’s all discounted future net payment flows by holding a bond.
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buying (selling) transactions, which include both transactions between two FINRA” member
firms and transactions between one FINRA’s member firm and one outside non-member firm,
in month ¢. For this estimator, we assume traders’ idiosyncratic private valuations remain
unchanged within each month.*® And to control the change in bond’s fundamentals, for
each buy/sell transaction, we follow Choi and Huh (2019) to use a volume-weighted average
transaction price between FINRA’s member firms under some restrictions®® as the current
transaction’s reference price, and then subtract the reference price from the raw price to
obtain an orthogonalized price.

In finite samples, for each trader, the maximum orthogonalized buying price is a down-
ward biased estimate of the trader’s net payment flow, while the minimum orthogonalized
selling price is an upward biased estimate. Taking the average of two will help cancel out the
biases. In small samples with traders’ unbalanced buy and sell trades, the levels of upward
and downward biases may not be equal. Then to cancel out the biases as much as possible,
the weights assigned on the two extreme prices can be adjusted according to the realized

number of buy and sell trades. Detailed explanations on the estimator is in Appendix C.2.

Estimate of inventory position We follow the approach in Hansch, Naik, and Viswanathan

)«

(1998) to estimate the monthly series of traders’ “standardized” inventory position, which is
monotonically increasing with real inventory position across traders. We use Qf’t to denote
the (unobservable) trader i’s inventory position in bond j and month ¢, s.t. 0 <t < T,
where 7' is the last month of our sample. We use qut to denote the corresponding observable
signed net trading volume, which is positive (negative) when the trader i increases (shrinks)

her inventory position of bond j in month . With unobservable initial inventory Qg,o, ]-?t

satisfies:

t
L=Qlo+ ), (11)
s=1

48Essentially it is important that within each bond and month, traders’ relative preferences for the bond
remain unchanged. In other words, if we rank all traders by their private valuation for the bond, from low
to high, at the start of the month, the order of traders will remain fixed throughout the whole month.

49The restrictions include: the trades used to calculate the reference price are required to be larger than
$100,000 in the same bond-day with the current buy/sell trade, and more importantly, these trades can not
happen within 15 minutes surrounding the current trade.
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Then we construct the standardized inventory for each trader i, bond 7 and month ¢:

QO
I, = Tut W (12)

J
g;

_ . T
where Q7 , = 2 Ti?

of the monthly series.

and a = \/ S QZ QL) are the sample mean and standard deviation
50

The standardized inventory If , essentially measures by how much the current inventory
Qit deviates from the unobserved target level Qit, and the deviation is scaled by the volatility
of the series within each pair of trader ¢ and bond j. By similar derivation in Hansch,
Naik, and Viswanathan (1998), this standardization (i) excludes the effect of unobserved
initial inventory position Qio after issuance®, and writes standardized inventory as a linear
combination of a series of signed net trading volumes {qf’s}; and (ii) controls for differences
in risk aversion to guarantee the comparability of inventories across traders (see Friewald
and Nagler (2016)).

Estimate of bond misallocation With the estimated monthly series {(5Z ¢ Figeand {1 1t} it
we calculate the series of the covariance between traders’ private valuation and inventory

position, within each pair of bond 7 and month ¢ as follows:

50\“([1'];1?7 55,1&) = ! Z (Iij,t - Ti) * (51{15 - §Z> (13>

75t
Ntrader i€Trader;

where Trader;; is the collection of all traders who completed at least one transaction in
bond j on both the buy and sell sides of the market in month ¢, and Nt

ader 18 the number

of traders within the collection Trader;; (5t and T’ , are the simple cross-trader averages of

private valuation and inventory position within the collection T'rader; ;.

50For a robustness check, we also follow Friewald and Nagler (2016) to calculate Q7 + and ‘71 , only using
series of signed trading volumes within the fixed rolling time window [t,t — R]. We obtain similar results for
our quantitative analysis.

51We calculate the series of standardized inventory {Ift} before dropping bond transactions during a
3-month on-the-run period following issuance.
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3.3 Relationship between bond misallocation and liquidity risk

In this section, we show that bonds with a higher level of misallocation are less sensitive
to change in search friction, regardless of the direction in which price moves with search
friction. This finding supports that: the distribution of traders’ idiosyncratic states are
related to corporate bond’s liquidity risk from search friction.

To verify this relationship, we construct a yearly panel data on bonds’ yield-spread load-

ings on search friction B,jS'ysSearch , and within-bond-year average monthly covariance between

private valuation and inventory position, C’ovy(]f - ,5Z]m ). In particular, 5§yssearch,y is es-
timated for bond j which has transactions completed in year y, using bond j’s all monthly
observations within the time window [y — 2, y|, which has fixed length of three years. Cor-
respondingly, C’ovy( imy ,55 m,) is constructed as a weighted average of bond j’s monthly
covariances across all months My Within the time window [y — 2,y]. In summary, to con-
struct each point (6Sy85mmh Y C’ovy( Pmy (5f m,)) in the yearly panel data, we make use of all
the information on realized transactions, market structure, bond fundamentals, and market
aggregates, etc, within the most recent three years, for each year 7.2

We estimate the following regression model, separately for negative and positive ﬂg'ys Search.y’

to verify the relationship between bond’s misallocation, @y(.ﬂ &7 y) and liquidity risk

zm’ ,m

from search friction, Sg,  geareny:

ﬁgysSearch,y Qp + Q * COU?J( i,my 755771 ) + aQFJ + ¢J + Ty + GJ (14>

where the vector ij includes independent variables which potentially cross-sectionally de-
termine bonds’ liquidity risk from search friction, such as the weighted averages of bond
fundamentals (outstanding amounts, time-to-maturity, credit rating), proportions of trans-
actions only between FINRA’s member firms relative to those between one member and one
non-member firm, bond liquidity level measured by turnover rate, issuers’ financial condition
(ROA, leverage ratio, B/M ratio), and level of bond-specific search friction within each time
window. The year fixed effect 7, controls all the other unobserved variables which remain

cross-sectionally fixed within each time window ending at year y. We also include industry

52For summary statistics of constructed monthly series of misallocation and yearly panel data of
{(BSysSearch y’COUU( 1,y zm ))}J yy S€€ Table 10.
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fixed effect ¢; to control unobserved variables which are related to bond issuers’ industry
and remain fixed over time.

The results in Table 3 are consistent with the model prediction that, in cross section,
a higher level of misallocation among traders, i.e. a lower value of C’ovy( lmy,cﬂ my)
associated with a lower absolute value of liquidity risk from search friction. In other words,
a higher aggregate trading need to reallocate a bond’s positions among traders makes the
bond’s price more rigid to change in search friction. For full regression results, see Table 11
and Table 12.

For robustness check, (i) we replace the average bond misallocation, C’ovy( F &7 )

within each time window [y — 2,y], with the median value of the monthly bond misallo-
—— Median
cations within the time window, which is denoted as Cov, (I & ). This controls

2,My ) 71 ,My
the situation that monthly bond misallocation varies signiﬁcantly acrj)ss the three years of a
time window. The results are consistent with when using Covy( iy 5fm ) as determinant,
see in Table 16 and Table 17 in Internet Appendix. (ii) besides showing how the conditional
mean of liquidity risk, BéysSearch,y’ varies across different levels of bond misallocation, we
also look at how its different quantiles are determined by bond misallocation. The results

in Table 4 show that, for /Bgysseamh , With values above the median level (more likely to be

positive), their values decrease with bond misallocation (increase with C’ovy( lmy,éf my))i

for ﬁéys Search,y With values below the median level (more likely to be negative), their values

increase with bond misallocation (decrease with C’ovy( imy 6] )

3.4 Testing the other model predictions

In this section, we test the other two model predictions, which helps validate the channel
through which bond misallocation determines bond liquidity risk from search friction. The
first one is, bonds with a higher level of initial misallocation among traders are associated
with a higher volume of transactions. The second one is, bonds with a higher holding cost
for low-type traders are more likely to have a negative value of liquidity risk from search

friction, ie. ﬁSysSearch <0.
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Table 3. Correlation between conditional mean of bond misallocation and liquidity risk from search friction

Dependent variable Bgyssemch y <0

(1) (2) (3) (4) (5)
Covy(I,, .01, ) (1,000 x %) -0.93"*  -0.90™*  -0.61*  -0.53™*  -0.65"
(-6.82) (-6.81) (-4.83) (-3.36) (-3.35)
Adj R 0.10 0.11 0.19 0.19 0.19
# of Bonds 5013 5013 5013 4012 4012
# of Obs 15028 15028 15028 11837 11837
Industry FE YES YES YES YES YES
Year FE YES YES YES YES YES
Dependent variable 6J5yssearch7y >0
(1) (2) (3) (4) (5)
Covy(I7,, ,61,, ) (1,000 x %) 0.78%** 0.74%%* 0.54%%* 0.49%** 0.48%**
(6.65) (6.38) (4.89) (3.85) (3.76)
Adj R 0.07 0.08 0.16 0.17 0.17
# of Bonds 4337 4337 4337 3471 3471
# of Obs 9775 9775 9775 7726 7726
Industry FE YES YES YES YES YES
Year FE YES YES YES YES YES

Note: * p < 0.1, ** p < 0.05, *** p < 0.01. t-statistics are in brackets. Regression (1) only includes
bond misallocation as control; Regression (2) adds bond turnover rate as proxy for level of liquidity and the
ratio of the number of transactions between FINRA’s member firms to the number of transactions between
a member firm and a non-member firm; Regression (3) additionally adds bond fundamentals including
outstanding amounts, time to maturity and credit rating; Regression (4) additionally adds issuer’s financial
ratios including B/M ratio, ROA and leverage; Regression (5) additionally adds bond-specific average chain
length as proxy for bond-specific level of search friction.

3.4.1 Bond misallocation and aggregate trading volume

In the model, we obtain the following relationship between total volume of realized transac-

tions and the initial distribution of bond positions among traders.
TotalTrade = 2\ (0)\g(h) @7 (€)dg(h) (15)
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Table 4. Correlation between quantiles of bond misallocation and liquidity risk from search friction

Dependent variable ﬁ]SySSea’r‘ch y

7=0.1 7=0.2 7=0.3 7=04 7=20.5
C’ovy( - ,5{m ) (1,000 x %) -1.43% -0.97%* -0.61%** -0.15* -0.01

(-5.06) (-10.07) (-8.88) (-1.71) (-0.19)
Psuedo R? 0.34 0.32 0.31 0.30 0.29

T=0.6 T=0.7 T=0.8 T=0.9 T =0.95

Covy(I,,, .87,,) (1,000 x %) 0.08%** 0.27%%* 0.54%** 0.88%** 1.66*
(1.55) (4.45) (5.50) (5.75) (4.47)
Psuedo R 0.28 0.28 0.28 0.30 0.31
# of Bonds 4334 4334 4334 4334 4334
# of Obs 19563 19563 19563 19563 19563

Note: * p < 0.1, ** p < 0.05, *** p < 0.01. t-statistics are in brackets. All regressions include the following
independent variables: bond misallocation, turnover rate, the ratio of the number of transactions between
FINRA’s member firms to the number of transactions between a member firm and a non-member firm, bond
fundamentals (outstanding amounts, time to maturity and credit rating), issuer’s financial ratios (B/M ratio,
ROA and leverage), and bond-specific average chain length.

where TotalTrade increases with ¢$(¢), or in other words, increases with the level of bond
misallocation. T'otalTrade can also be regarded as the total amount of bond positions being
reallocated among traders.

We estimate the regression model (16) using yearly panel data, to test the equilibrium

condition in (15).

VollIMNon — 5o 4 81 x Cov, (I, 01,) + T1 X7 + ¢y +my + ¢ (16)
where VOZ%MJ“N °" is the total trading volume including both transactions between two

FINRA’s member firms (M-to-M) and transactions between one member firm and one non-
member firm (M-to-NonM or NonM-to-M) for bond j and year v, Cov. (I (1 &7 ) is the

4,y i,y
within-bond-j covariance between its traders’ private valuation and inventory position in
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the first month of year y. 50\21;([5 " Sfy) is our most interested independent variable because
it measures the initial level of bond misallocation in each year. We also incorporate other
independent variables, denoted as Xg, including the averages of bond’s outstanding amounts,
time-to-maturity, credit rating, and level of search friction, etc, within each year y. We
control industry fixed effect ¢; and year fixed effect 7.

The results in Table 5 shows that, the sign of [ is negative, i.e. a lower value of
50\@;([ f " 3fy) (a higher initial level of bond misallocation) is associated with a higher value of
total trading volume. This is consistent with the model prediction that an initial distribution
of bond positions with more positions allocated to lower-type traders motivate all traders to
reallocate the positions among themselves. For robustness check, we replace the dependent
variable VOZ%/M N with only M-to-M trading volume Vol %M and turnover rate T'urnover;,
which is total trading volume divided by bond outstanding amount. The results are still

consistent.

3.4.2 Determinants of the sign of Bgysscarch

The low-type traders’ holding cost determines whether it is urgent for low-type bond holders
to offload their inventory positions to others as quickly as possible. In other words, low-type
bond holders’ holding cost is closely related to the selling pressure in a bond market. We
follow Feldhiitter (2012) to use differences in prices for small and large trades as proxy for
bond selling pressure, and test its relationship with the sign of Bsyssearch- We consider a

regression with the following specification:
]l(ﬁéysSearch,y < O) =% + ,lengJJ + ’72F;3 + ng + Tly + 6{/ (17)

where Di ij is the volume-weighted average price difference between investor sells with a
volume of more than $1, 000, 000 and investor sells with a volume less than $100, 000, within

the fixed-length time window ending at year y.°> We also incorporate independent variables

53Specifically, we calculate the price difference only for transactions of “non-member firm sold to member
firm” and transactions between two member firms. The reason we exclude the transactions where FINRA’s
member firms sold to putside non-member firms is, we focus on the selling pressure which is sourced from
lower-type traders. Therefore, by assuming non-member-firm-sellers and member-firm-sellers have relatively
lower private valuations, the price difference between large and small trades of those traders is a better proxy
for the selling pressure in the market.
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Table 5. Correlation between initial level of bond misallocation and total trading volume

Dependent variable

VOZ%M+N0"($) VOZ%M(SS) Turnover;., (%)

Cou, (I1,.87,)(1,000 x %) -2.55% -0.97%* -0.05%**

(-2.23) (-2.93) (-3.05)
Amtout], ($billion) 1.04e+09%* 2.82e+08**

(15.57) (11.12)
TTM; (thousand days) 2.14 0.50 -0.31%

(0.53) (0.43) (-6.43)
Rating]) 3.35e4+07*** 5.61e+06*** 0.93***

(10.53) (9.32) (9.43)
AveChainLength), 1.34e+08*** 5.41e+07*** -3.69%**

(5.95) (6.44) (-5.96)
Adj R? 0.61 0.50 0.05
# of Bonds 5336 5336 5336
# of Obs 24074 24074 24074
Industry FE YES YES YES
Year FE YES YES YES
Bond fundamentals YES YES YES

Note: * p < 0.1, ** p < 0.05, *** p < 0.01. t-statistics are in brackets. Standard errors are clustered at the
bond level. VOZ%IM is the volume only including transactions happened between FINRA’s member firms.
Turnover;, is the turnover rate (total trading volume divided by outstanding amounts). With Turnover; ,
as dependent variable, we exclude bond’s outstanding amount from independent variables.

sz same as (14). Finally, we control industry fixed effect ¢; and year fixed effect 1,.

Table 6 presents the regression result under a linear probability model (OLS) assumption,
together with those under logit and probit model assumptions. The results all indicate a
positive value of =, i.e. a higher price difference between large and small trades (a higher
selling pressure) is associated with a higher probability of negative value of ﬁéys Search,y- LIS
is consistent with Proposition 1 in that under a higher value of holding cost C', there exists

a unique equilibrium with negative value of liquidity risk BgySSeamh’y.
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Table 6. Correlation between selling pressure and the sign of liquidity risk from search friction

Dependent variable l(ﬁéysSeamw < 0)

Linear probability Logit Probit
Dif, 0.03** 0.11%* 0.07***
(2.36) (2.75) (2.73)

Amtout], ($trillion) 7.31 31.1 19.8
(1.08) (1.21) (1.25)
TTM; (thousand days) -0.01%** -0.02%** -0.02**
(-3.22) (-3.74) (-3.74)
Rating] 3.07e-03* 0.01*** 0.01**
(1.86) (2.09) (2.03)
B/M;} 0.07* 0.31* 0.19***
(6.90) (7.85) (7.83)

ROA), 0.02 0.16 0.08
(0.35) (0.60) (0.50)
Leverage{, 0.19*** 0.79*** 0.49***
(6.05) (6.82) (6.81)

Adj/Pseudo R? 0.01 0.01 0.01
# of Bonds 3395 3395 3395
# of Obs 14971 14971 14971

Note: * p < 0.1, ** p < 0.05, *** p < 0.01. t-statistics are in brackets. Standard errors are
clustered at the bond level.

4 Conclusion

In this paper, we document the cross-sectional heterogeneity in corporate bond’s liquidity
risk from search friction, which helps explain the cross-section of bond yield spread levels.
We propose a measure of bond misallocation among traders, and empirically show that this
measure is cross-sectionally correlated with bond’s liquidity risk from search friction. In
particular, a high (low) level of bond misallocation is associated with a low (high) absolute
value of liquidity risk from search friction, regardless of the sign of liquidity risk.

Based on a simple search-and-match model, we clarify that bond misallocation determines

the absolute value of liquidity risk from search friction, through driving traders’ search
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activity in the decentralized market. In particular, a higher level of misallocation of positions
among traders motivate all traders to search at a higher intensity to reallocate the positions
among themselves. When search friction increases, although it is more costly to search,
the higher level of bond misallocation still motivate traders to maintain a higher search
intensity. As a result, for the marginal traders who have strong incentive to offload their
holding position (buy bond from others), they do not need to accept a much lower (higher)
price than before, in order to maintain the easiness of trade. Therefore, with a higher level
of bond misallocation, bond price changes by a lower amount for per unit change in search
friction. Similar analysis works for the case of low bond misallocation. The model predictions

can be verified by the data.
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Table 7. Summary statistics. Table-A provides mean, standard deviation, 5th, 50th (median) and
95th percentiles of bond-level characteristics. For variables “Offering amount ($million),” “Coupon(%),”
and “Maturity (years),” we calculate summary statistics based on bond-level observations; for variables
“Amount outstanding($million),” “Credit rating,” “Age (years),” and “Month turnover (%),” we calculate
summary statistics based on bond-month observations. “Month turnover” is calculated by dividing bonds’
monthly total trading volume (in units) by bonds’ average amount outstanding for each month. Table-B
provides statistics on transaction activity of different sub-markets. “M-to-NonM” indicates transactions
in which FINRA’s member firms sell to outside non-member firms; “NonM-to-M” indicates transactions in
which FINRA’s member firms buy from outside non-member firms; “M-to-M” indicates transactions between
FINRA’s member firms. The sample starts on January 2, 2005 and ends on September 30, 2015.

Table A: bond fundamental characteristics (10760 bonds)

Mean Std. dev. Q5 Q50 Q95
Offering amount ($million) 458.97 577.99 5.74 300.00 1500.00
Coupon(%) 5.72 1.88 2.50 5.65 9.00
Maturity (years) 11.29 7.61 3.28 9.99 30.03
Amount outstanding($million) 499.35 615.95 6.88 350.00 1750.00
Credit rating 8.53 (BBB) 3.94 3.00 (AA) 8.00 (BBB+) 16.00 (B-)
Age (years) 3.70 2.55 0.48 3.17 8.72
Month turnover (%) 6.92 11.42 0.39 3.57 23.76

Table B: transaction activity

All M-to-NonM NonM-to-M M-to-M
Num of trades (million) 57.62 20.88 15.43 21.31
Total par value($trillion) 27.80 10.57 10.52 6.70
Average par value ($million) 0.48 0.51 0.68 0.31
Average vol (thousand) 482.41 506.25 681.86 314.59
Std. vol (thousand, all bonds) 4.47 5.47 4.46 3.22
Std. vol (thousand, within bond) 1.58 1.62 1.89 0.87
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Table 8.

Fama-Macbeth regression of yield spread level on factor loadings

Subperiod pre-crisis  crisis  post-crisis  requlation  Volcker

(s=1) (s=2) (s =3) (s =4) (s =15)

A&ysSeareh (PPS) -1.217 -0.89"*  -3.65"** -1.13**  -0.89***
(-3.43) (-5.70) (-10.46) (-6.00) (-5.18)

SysNetConcen (DPS) 0.28** -0.18** -0.21* -0.95% 1.23***
(2.45) (-6.55) (-2.25) (-10.06) (9.33)

Aprearrange (PDS) 0.01 -0.36™** 0.96%** 1.60*** 1.60***
(0.05) (-3.12) (6.03) (10.73) (6.61)

s ., (bps) 0.35%** 0.06%** -0.03 0.20%* -0.18%*
(8.18) (4.55) (-0.618) (4.33) (-3.87)

Niocktrade (DDS) -0.06™*  -0.03***  -0.17** -0.13* -0.1%*
(-3.20) (-3.92) (-14.60) (-13.5) (-6.59)

N H Itrader (DDS) 3.89*** 0.40 -0.45 -0.06™** 5.66™*
(3.41) (1.60) (-0.482) (-9.67) (6.91)
Adjusted R? 0.48 0.51 0.62 0.45 0.42
# of Observations 2371 2468 2517 7078 2958
Bond liquidity and fundamentals YES YES YES YES YES
Trade concentration among traders YES YES YES YES YES
Segmented market transactions YES YES YES YES YES

Note: * p < 0.1, * p < 0.05, *** p < 0.01.

t-statistics are in brackets.

We exclude bonds

with total number of observations smaller or equal to 19 for column (1)-(2) and smaller or equal to
25 for column (3). The reported estimated coefficients are average values taken across all bonds.
The corresponding t-statistics are calculated by dividing each reported (average) coefficient value
by the standard deviation of the estimates and scaling by the square root of the number of bonds.
Specifically, the value of quy sNetConcen,s is estimated corresponding to when the unit of trader-network

concentration is million; the value of 'Y{,mu, . 1s estimated corresponding to when the unit of aggregate

inventory position is $trillion; the value of 73 ;1 1irader.s 1 €stimated corresponding to when the unit
of bond-level HHI index is thousand.
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Table 9. Chain Length and Trade Information (Jan 2005 - Sep 2015)

Num (thousands) Vol($1,000) Markup(%) Total time elapsed (mins)

CTC 3982.47 1092.33 0.999 10591.89
C(2)TC 1180.52 181.57 1.317 15192.10
C(3)TC 1028.50 155.09 2.102 16253.38
C(4)TC 351.85 55.57 2.334 19404.53
C(5)TC 104.86 112.42 2.112 25066.72
C(6)TC 32.57 64.68 2.374 34231.25
C(7)TC 12.69 125.46 2.272 40545.61

Note: C(i)TC means there are i traders on the chain; Vol($1,000) is the average trad-
ing volume per chain calculated for each length throughout the whole sample period;
Markup(%) is the average total markup per chain calculated for each length throughout
the whole sample period; Total time(mins) is the average total time gap per chain calcu-
lated for each length throughout the whole sample period; We record an intermediation
chain as being pre-arranged if its total time is shorter than 1 minute.

Table 10. Summary statistics on monthly and yearly series of bond misallocation. This
table provides mean, standard deviation, 5th, 50th (median) and 95th percentiles of monthly series

of bond misallocation {@)(Iff,Sff)}j ¢, yearly series of bond misallocation {é&;y(lfm ,57m )}y and

— Median

{Cov, (Ifm ;0] my, ) }iy> and yearly series of liquidity risk from search friction {BSysSearch o}y, among
_— Medi
which Cov,, ‘ mn( Lo, 76f m, ) denotes the median value of the monthly misallocations of bond j within the

time window ending at year y. The unit of bond misallocation is $ x %, because in data, transaction volume
is reported in par value and transaction price is reported as percentage of face value.

Mean Std. dev. Q5 Q50 Q95

Cov(L,,87,) ($1 x %) -4.20  417.18  -359.41  0.00  340.06

Covy (I ) ($1 x %) 29.94  412.20  -448.73 10.77 569.88

zm’zm

—— Median

Cov, (I, .00, ) ($1x %) 1355 8459  -9415 7.026 144.93

B searchy -1.91 775 16.03 -0.84 854
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Table 11. Correlation between bond misallocation and liquidity risk from search friction

Dependent variable:

J
BSysSearch,y <0

(1) (2) (3) (4) (5)
(Z%y(fz{my, 0 ,) (1,000 % %) 093" -0.90™*  -0.61"**  -0.53***  -0.65™
(-6.82)  (-6.81)  (-4.83)  (-3.36)  (-3.35)
turnoverl, (%) SL8THE L0.807  -0.50%*  -0.50***
(-7.58)  (-3.39)  (-2.08)  (-2.11)

Num_ MM; (thousand) SL6TH 0687 -0.10 -0.10
(-8.68)  (-3.60)  (-0.52)  (-0.54)

Num__Nonj, (thousand) 1.49%  0.54* 0.21 0.21
(11.17)  (3.87) (1.50) (1.52)
Amtout], ($billion) 0.74%% (.78 0.75%*
(7.32) (7.39) (6.69)
TTM; (thousand days) 0.11%*  0.10%*  0.10**
(5.59) (4.91) (4.96)
Rating) 0.66%  -0.58"*  -0.58***
(-36.11)  (-26.59)  (-26.41)
B/Mj} 21,967 21,94
(-15.09)  (-14.75)

ROA] 1.20 1.16
(1.29) (1.25)
Levemgei -2.617 22,58
(-5.84)  (-5.75)

AveC’hainLengthi -0.12
(-0.77)

Adj R? 0.10 0.11 0.19 0.19 0.19
# of Bonds 5013 5013 5013 4012 4012
# of Obs 15028 15028 15028 11837 11837
Industry FE YES YES YES YES YES
Year FE YES YES YES YES YES

credit rating Rating].
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Note: * p < 0.1, ** p < 0.05, *** p < 0.01. t-statistics are in brackets. All the following variables are
weighted averages within the time window [1,y]: turnouer% is turnover rate which is the ratio of total
trading volume to total outstanding amount; Num_ M M} is the number of transactions happened between
FINRA’s member firms, and Num__ N ong is the number of transactions happened between a member and a
non-member firm; bond fundamentals include outstanding amount Amtout], time to maturity TT'M;), and



Table 12. Correlation between bond misallocation and liquidity risk from search friction

Dependent variable:

J
BSysSearch,y >0

(1) (2) 3) (4) ()

Covy(I},, 67, ) (1,000 x %) 0.78  0.74**  0.54* 049" .48
(6.65)  (6.38)  (4.89)  (3.85)  (3.76)

turnoverl, (%) 0.92%*  (0.34*** 1.10"** 1.15%*
(5.78)  (2.22)  (4.35)  (4.51)
Num_ MM (thousand) 0.98%* (.32 0.09 0.10
(5.13)  (1.73)  (0.46)  (0.54)
Num__Nonj, (thousand) 21019 -0.31* -0.19 -0.21
(-8.50)  (-2.49)  (-1.45)  (-1.58)
Amtout], ($billion) 0.667F  -0.61%**  -0.52%*
(-6.91)  (-5.99)  (-4.83)
TTM; (thousand days) 0.09%*  -0.08***  -0.08***
(-5.25)  (-4.33)  (-4.62)
Rating) 0.43*  0.36***  0.37"**
(27.26)  (19.20)  (19.39)
B/M;] 1.20%*  1.15%
(9.40)  (8.91)
ROA; 0.20 0.26
(0.25)  (0.32)
Levemgei 2.13" 2.00"**
(5.50)  (5.13)
AveChainLength 0.45%**
(2.77)
Adj R 0.07 0.08 0.16 0.17 0.17
# of Bonds 4337 4337 4337 3471 3471
# of Obs 9775 9775 9775 7726 7726
Industry FE YES YES YES YES YES
Year FE YES YES YES YES YES

Note: * p < 0.1, ** p < 0.05, *** p < 0.01. t-statistics are in brackets. All the following variables are
weighted averages within the time window [1,y]: turnouer% is turnover rate which is the ratio of total
trading volume to total outstanding amount; Num_ M M} is the number of transactions happened between
FINRA’s member firms, and Num__ N ong is the number of transactions happened between a member and a
non-member firm; bond fundamentals include outstanding amount Amtout], time to maturity TT'M;), and
credit rating Rating;,.
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Figure 5. Liquidity risk of bonds in different industries
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Figure 6. Liquidity risk of bonds classified into different groups
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Note: For each group of bonds, we plot the point estimate of factor loading Ssyssearch together with its 95%
confidence interval.
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Figure 7. Distribution of bond-specific yield spread loading on systemic search friction (11176 bonds)
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Figure 8. Summary on identified intermediation chains
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Appendices

A Identify pre-arranged transactions

In this paper, the “pre-arranged” transactions we consider include agency(or agency-like)
transactions and risk-principal transactions. For agency transactions: traders behave as
“match-makers” to pre-arrange transactions between buyers and sellers, and do not hold
bonds in their inventories. Each pair of agency-like transactions have the same price and
volume in opposite directions, and happen at very close or exactly the same execution time(s).
In the data, we identify agency transactions by two approaches: [1] by the fields “Buyer/Seller
Capacity” with value as “Agency”; and [2] we look for pairs of two trades (with the Capacity
fields not as “Agency”) in a given bond with the same volume by the same trader but in
opposite directions, and take place within 15 minutes of each other. As FINRA requires that
reports need to be submitted within 15 mins after the transactions happened, this approach
will identify those pairs with one buy and one sell transactions which do not have exactly the
same execution time. The difference in execution time could be due to reporting errors, so
that it is still very likely that the traders conducting the matched buy and sell transactions
do not take any inventory risk. For riskless-principal transactions: traders temporarily
take bond positions in their inventories but without taking any inventory risk. In the data,
we identify riskless-principal transactions through matching buy and sell transactions with
the fields of “Buyer/Seller Capacity” as “Principal”, and conducted by the same trader and

with the same volume, price and execution time.

B Identification of intermediation chains

The matching algorithm to construct intermediation chains is an extension of the algorithms
in Hollifield, Neklyudov, and Spatt (2017) and Li and Schiirhoff (2014). Note that to be
consistent with these two papers, only in this section, we call FINRA’s member firm as
“trader” and denote it as “T”, and we call outside non-member firm as “customer” and
denote it as “C”. Similarly, the intermediation chains start from customer-sell-to-trader

trades and end at trader-sell-to-customer trades. We also use the first-in-first-out(FIFO)
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matching algorithm to look for the next trades for each incomplete chain. The main difference
is, we only allow the split matching in the first round of the loop. After the first round, we
track a fixed par amount of a bond until finding the final customer buyer.

Each intermediation chain starts from a trade that a customer Cy sells some amount of
a bond to a trader 7. We then look for the next trade completed by trader 77 selling to a
customer or another trader within a calendar time window from -1 day to +30 days around
the initial C-sells-to-T; trade. The initial trade is then followed by a trade that the trader
Ty sells the same amount (of the same bond) either to a customer C. or to another trader
T,. In the first case of selling-to-C,, the current intermediation chain ends and it is recorded
as a CTC chain, that is, there is one trader on the chain; In the second case of selling-to-T7,
the current intermediation chain is not ended and is temporarily recorded as an incomplete
chain CTT. We continue looking for trades completed by trader 73 selling to a customer
or another trader within the same calendar time window. This process will continue until
finding a trader-sell-to-customer trade of the same bond in same par amount.

We only consider “split matching” in the first round of loop in the sense that, given the
initial C,-sell-to-T; trade, we look for a trade with T as the seller of the same bond and
with the shortest time gap to the initial trade. Suppose the initial trade has par amount
()1 and the next closest trade is “trader 17 sells ()5 of the same bond to a trader 75”. Then
if Q1 > @), that is, the initial trade has larger par amount than the second trade, we split
(21 into two pieces Q)2 and ()1 — ()2, and we record a new incomplete chain C'I"T" with par
amount Q and put the remaining par amount @)1 — Q2 (sold by Cy to T7) back to the pile of
initial customer-to-trader trades to be used to initiate new intermediation chains; If Q1 < @9,
similarly, we split () into two pieces (J; and ()5 — ()1, and we record a new incomplete chain
CTT with par amount (), and put the remaining par amount Q5 — @), (sold by T} to T3) back
to the pile of candidate inter-trader trades that will be used to generate more intermediation
chains. After the first round of the loop, for all incomplete chains CTT, we restrict that all
matched trades on the same intermediation chain after the first round need to have exacty
the same par amounts. Same as Li and Schiirhoff (2014), we allow for up to 7 traders on
an intermediation chain. Figure 9 shows the “split matching” in the first round. Table 9

reports the average trading information of intermediation chains of each length.
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Figure 9. Split matching in constructing intermediation chains
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Note: () denotes the value of the ith trader’s private valuation. In this example, the initial customer-
sell-to-trader-6(!) transaction finally generates three identified intermediation chains through splitting. The
intermediation chains ending at Customer-Buyer-1, Customer-Buyer-2 and Customer-Buyer-3 correspond-
ingly have lengths as four traders, two traders and one trader.

C Model

C.1 Proof of Proposition 1
C.1.1 solve equilibrium components under restriction d — C' = —d

Since we already have Aj(¢) = Aj(h) = 0, the traders’ problem (3) will reduce to low-type owner’s

problem P;  and high-type nonowner’s problem F ), as follows®:

Pt Uh(0)= max 1 - e PHONWADA] i mIONOEOL S (4_T)  (18)

A1(0)>0
—kAL(0)2A
= nax 20 (O (R)dg (M)A x P+ (1 = 20 (O)A5(h) o (h)A) x (d — C)
—kM (%A

54We ignore the discount rate r since it does not affect solutions to traders’ problem.
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Pyn: Us(h) = Jmax 1 — e 220MWONOA 5 (4 — P) — kAo(h)2A

= max - DA x (d— P) — mdo(h)*A

The optimality conditions of problems P; , and F ), are as follows:

A ()G (h) (P — d + C)

Xi(0) = -
)‘Z()(h) — /\T(@(b?(i)(d_ P)
= _
Xi(O) _ )P -d+0) _ &
() . HO(d—P)
—

equilibrium price P solves:

k2= ¢ (0§ (h)(P —d+C)(d — P)

K2

2 _ - C - C e
P2 —(d+d-C)P+d(d C>+¢?(f)¢8(h) 0

With restrictions 0 < P < d, d — C = —d < 0, we have the unique transaction price

. 2d — C + \/(2d—€)2—4(d(d—€)+WjW)
N 2

2

. . a a K —2 w2
which requires (2d — 0)2 — 4(d(d - C) + W) =C" — m > 0.
With normalization U;(¢) = 0,

U(0) =d —C + kX2 (0O)A =0

o4

(19)

(23)

(24)

(25)

(26)

(27)



Then the other equilibrium components are calculated as follows:

N (0O (0)(d— P) | rx®(O)(d—P)

Ni(h) = ‘ - - (28)
d(¢2(0))%(d — P)?
(a) % < 0 and d¢g(£)|‘fl—i| < 0:
By (25),
EZL % __ 8 <0 (30)

where A = (2d — O)2 — 4(d(d — C) + A=),

om0
Then by ¢§(h) = § — s+ 95(0), “IOBO) _ 95006 4 1 — 5 > 0, we have,
d dP d 1 1
w2~ i (72 % woam) oy
s i 2K GO | GO0
= 0)¢8(h VA
ax @osmr | NN Gesme g YT a0
0 >0
<0
(b) daram |G| > 0
By (6), LCon*(a, )
ov°(a,d)
wo ()
With (31), we have,
d P des(0) d dpP d dpP

X

=2 x4y (33)
T —C " deg(0)' dk

dCov°(a,0) |%‘ - dCov°(a,0) % des(0) ’%

55



C.1.2 equilibrium under new restrictions d > m and d < C < 2d
1 0

Again by equilibrium conditions, price P solves:

— — K
—(d+d-C)P+d(d-C)+ ———~~=0 34
rd= P+ A= Siem ey
Given O > W without restricting P > 0, solutions to (34) are P; and P:

., 2d — C + \/(2d—€)2—4(d(d—6)+W%m)
1:

(35)

24— C — \/(2d —C)? - 4(d(d - C) + zriaariy)
P = 5 (36)

— 12
If d < C < d + W: 0 < d(d - C) + ¢‘1’(ﬁ)¢8(h) ¢O(f)¢0(h)’ then both P1 and P2 are

positive. When equilibrium price is P, based on same proofs in section C.1.1, we have ddﬁ < 0,

L 2><dﬁ<03md

P,
B SysSearch = 0.009(17F) |%2] > 0. When equilibrium price is Py, we have,

dCov (a,9)
dP2 1 8K
Sl x>0 37
dx = VA HORM) 7
-
AP, d <dP2>
38
50~ we (%)
gy ( 1 1 )
do5(0) \ VA ™ 95(0)g(h)
<0 (same as (31))
-
d dP; A () Py _dCov®(a,0)
iCov(a.0) dr |~ dCovo(a,5) ( o0 an > since — 5%~ ¢<0 (39
Ifd+W<U§2d: d+W<d(d C)+¢o(£)()<0,thenP1>0and

P, < 0, therefore only P; can be the equilibrium price.
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C.1.3 proof of inequality (8)

By (7),
P 1 dPp; .
Bsyssearch = 0.009(1+ B,)2 X e fori=1,2 (40)
—

P; d(‘ZH) dP;
dﬁSysSearch dCova‘l’(aﬁ) (1 + R) o 2 (1 + B ) dCov (a d)

— 41
dCov°(a,0) 0.009(1 + P;)* (41)
A5t
T+ P) 2Ry de)
B 0.009(1 + P;)3 dCov°(a,§)

1 aPy _ 1 1
(a) Fori=1, BSysSearch 0.0090F P2 < dx = 0000014 P)7 X 7T X ¢0(e)¢>0(h) <0, then

d( dPl)

dlBSysSearch o A9 () (1 + Pl) Qddil dgf(l 0 % d(#f (6)
dCov°(a,8) 0.009(1 + P;)3 dCov°(a,?)
2K 8?2 8K
— VA|(1+P
{ (ﬂwwwsw)) i ) 1+ P+ ¢3<6>¢3<h>} A G ORME)?
ASORM) | Tobian
e (0) 0.009(1 + Py)3
<0 (because Cm < 0 and W >0)
) 1

1 dP: 1
(b) FOI“ Z = 2 ﬂSysSearch m X HQ = W X \/Z X W > 0 Flrstly Wlth the

1 2
oy . . 2 1— 57§+ (2 ) +32k
additional restrictions £* < 4* and 5 < p9(¢) < 5, we have,

2
5—1 1_82 //‘02 S—l 1_52 /{2
<¢‘f<f>>2+<1s>o<z>>( o )+<1 e A

(42)
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where the first inequality is because the function (¢9(£))* + (5 — )¢9 (¢) is strictly increasing at the

. s—%—&— (%—5)24-32/{2 1 1
point 3 , regardless of whether s < 5 or s > 5. then we have,

(02 + (5 = 51080 = (0 (5~ 5+ 0110 ) = 650010500 > 50 (43)

Then as for the derivative of liquidity risk from search friction with respect to bond mis-allocation

for i = 2, we have,

P d(%2) dPy dP,
Bsysscarcn _ astn L T2~ a5l agtn  des(0)

dCov°(a, ) 0.009(1 + P»)3 x dCov°(a, )

22 8k2 —8K
B { (ﬂwwws(h» i m) 1+ 5)- ¢?(f)¢8(h)} e TICAOEIN)E

<0

o a5 ()
d(#5(€)g5(h)) ICov®(a,3)

dgs(0) " 0.009(1 + Py)3

2k2 8r? —8r
§ {2 " <\/¢Z<¢$<ws<h>> " ﬂ) S ¢?<€)¢8(h>} " AXGOs®)?

-~

<0

X

o a5 (0)
d(¢7(0)p5(h)) dCov°(a,3)

dgg(0) " 0.009(1 + Py)?

27 8k? —8k
il {2 " <\/\/Z(¢‘1’(5>¢8(h)) g m) - ¢‘1’(€)¢8(h)} * A (@0 F(R))?

<0
ARORN) | Tortam
des(0) 0.009(1 + P»)3
B 8Kk2 B 8k2 y —8k
B (p2(0)pg(h))  @3(£)9g(h) A x (9(0)ph(h))?
<0
SO | Torias
dg3 () 0.009(1 + P,)3
dgi(f) d(¢3(£)eg(h))
> 0 (because Of (43), W < O and W > 0)
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C.2 Estimate of traders’ private valuations

In the one-period search-and-match model, we denote bond holder’ value function as Vi(0) =
d— ¢ x (8, —0) and non-holder’ value function as Vj(9) = 0, for 6 € [0y, dp]. Then we define traders’
marginal valuation of the bond is AV (9) = V4(d) — Vp(d) =d — ¢ x (6 — 0), for § € [dy, O], which
measures how much compensation each trader requires for giving up holding one unit of the bond.
In the bilateral search environment, when two traders (suppose one holds one unit of the bond
and the other does not hold any position) with different private valuations meet, transaction only
happens when the bond holder’s private valuation is lower than that of the non-holder. Since net
payment flow conditional on holding the bond is monotonic with private valuation, the realized
transaction price will lie in between the net payment flows of the two traders.?® For a trader with

a type 0 € [0y, dp], her transaction price with another trader with a type &’ € [dy, 0p] is:
P(5,8") = w1 AV () + we AV (8) (44)

where the unknown weights 0 < wy,ws < 1 satisfies wy + ws = 1. Whether P(4,d’) is a selling or
buying price depends on whether the trader § “holds the bond and search on her sell side” or “does
not hold the bond and search on her buy side”.

For transactions happening on the sell side of the trader ¢, since AV (d") > AV (§)(otherwise
the transaction would not happen), if it is possible for trader § to meet a continuum of other
traders, the lowest selling price is exactly equal to AV (d) = d — ¢ x (0, — d). Vice versa, on
the buy side of the trader ¢, since AV (6") < AV(4), the highest buying price is exactly equal to
AV (§) =d — ¢ x (6, — 6). Again since AV (6) = d — ¢ x (0, — 0) is monotonically increasing with
private valuation J, we construct the following consistent estimator as a proxy for traders’ private
valuation 4: , A

ma:c{B/JyZnZtB} + mm{S/’ejl] Jf}

i,n;]
ot 2

(45)

where {gu\yz nj,f} ({@Znyf}) is the collection of all orthogonalized buying (selling) prices by
N N B (i
it (ni,t

trader ¢ for bond j in month ¢, and n ) is the correspondinng number of total buying

(selling) transactions in month ¢.

55Here for simplicity, we ignore the process of formation of the transaction price. The price could be
generated by a bargaining process or a trader makes a take-it-or-leave-it offer to the other. The reason we
pay attention to each trader’s series of realized transaction prices is that, the maximum and minimum of
a trader’s buying and selling prices can separately provide a lower and an upper bound on the trader’s net
payment flow (or marginal valuation of the bond).
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